Math 255B Lecture Notes Functional Analysis

Professor: Michael Hitrik Scribe: Daniel Raban

Contents

1	Fredholm Theory1.1Fredholm operators	2 2 2
2	Perturbation of Fredholm Operators and The Logarithmic Law2.1Perturbation of Fredholm operators2.2The logarithmic law	$\frac{4}{5}$
3	The Fredholm-Riesz Theorem3.1The Fredholm-Riesz theorem3.2Adjoints of inclusions and quotients3.3Proof of the Fredholm-Riesz theorem	7 7 7 8
4	Sums of Fredholm and Compact Operators and The Toeplitz Index Theorem4.14.1Fredholm plus compact is Fredholm4.2The Toeplitz index theorem	9 9 10
5	5.1 The Toeplitz index theorem	11 11 12
6	6.1 Analytic Fredholm theory	14 14 15
7	7.1 Motivation from quantum mechanics	17 17 18

 8 Realizations of Partial Differential Operators 8.1 Maximal and minimal realizations 8.2 Realizations of order 1 partial differential operators with smooth coefficient 	
9 Adjoints of Unbounded Operators 9.1 Adjoints 9.2 Examples: adjoints of differential operators 9.3 The graph of the adjoint	22
10 Symmetric and Self-Adjoint Operators 10.1 Adjoints of closable operators 10.2 Symmetric and self-adjoint operators 10.3 von Neumann's extension theory for symmetric operators	24
11 The Cayley Transform of Symmetric Operators 11.1 The Cayley transform 11.2 Deficiency subspaces	
12 Extending Symmetric Operators to Self-Adjoint Operators 12.1 Graph of the adjoint of a symmetric operator 12.2 Conditions for extending symmetric operators 12.3 Example: Extending the Schrödinger operator	30
13 Examples of Self-Adjoint Extensions 13.1 Self-adjoint extensions of differential operators 13.2 Essentially self-adjoint operators	
 14 Essential Self-Adjointness of Schrödinger Operators and Perturbate of Self-Adjoint Operators 14.1 Essential self-adjointness of Schrödinger operators	34 34
15 The Kato-Rellich Theorem 15.1 The Kato-Rellich theorem 15.2 Quadratic forms	
16 Closure of Quadratic Forms 16.1 Quadratic forms bounded below 16.2 Closed quadratic forms 16.3 Closable quadratic forms	40

17 Quadratic Forms and the Friedrichs Extension Theorem 17.1 Obtaining self-adjoint operators from quadratic forms	42 42
17.2 The Friedrichs extension theorem	43
18 Introduction to Spectral Theory of Unbounded Operators	44
18.1 The Dirichlet realization of a 2nd order elliptic operator18.2 Spectrum and resolvent	44 45
19 Development Toward the Spectral Theorem for Unbounded Self-Adjoint	
Operators	46
19.1 The resolvent	46 46
20 Development of Spectral Measures	49
20.1 Nevanlinna-Herglotz functions20.2 Construction of spectral measures via Nevanlinna-Herglotz functions	49 50
21 Properties of Spectral Measures	52
21.1 Total mass of spectral measures	52
21.2 Decay of spectral measures	53
21.3 Multiplicativity of the functional calculus	54
22 Multiplicativity and the Functional Calculus for the Laplacian	55
22.1 Multiplicativity of the functional calculus	55
22.2 Spectrum and functional calculus for the Laplacian	55
22.3 Correcting the norm bound in the functional calculus	57
23 Functional Calculus for Bounded Continuous Functions and Bounded	l
	F 0
Baire Functions	58 50
Baire Functions 23.1 Approximation in the functional calculus	58
Baire Functions23.1 Approximation in the functional calculus23.2 Domain of A in terms of spectral measures	$\frac{58}{58}$
Baire Functions23.1 Approximation in the functional calculus23.2 Domain of A in terms of spectral measures23.3 Summary of properties of the functional calculus	58 58 59
Baire Functions23.1 Approximation in the functional calculus23.2 Domain of A in terms of spectral measures23.3 Summary of properties of the functional calculus23.4 Extension of the functional calculus to bounded Baire functions	58 58 59 59
Baire Functions 23.1 Approximation in the functional calculus	58 58 59 59 61
 Baire Functions 23.1 Approximation in the functional calculus	58 58 59 59 61 51
 Baire Functions 23.1 Approximation in the functional calculus	58 58 59 59 61 62
 Baire Functions 23.1 Approximation in the functional calculus	58 58 59 59 61 62 63
 Baire Functions 23.1 Approximation in the functional calculus	58 59 59 61 62 63 64
 Baire Functions 23.1 Approximation in the functional calculus	58 58 59 59 61 62 63

26 Weyl's Cri	iterion and	l Wey	l's T	heor	em						
26.1 Weyl's		•				 		 			-

1 Fredholm Theory

1.1 Fredholm operators

Definition 1.1. Let B_1, B_2 be Banach spaces. An operator $T \in \mathcal{L}(B_1, B_2)$ is called **Fredholm** if the kernel ker $T = \{x \in B_1 : Tx = 0\}$ and the cokernel coker $T = B_2 / \operatorname{im} T$ are finite-dimensional. We define the **index** if T to be ind $T = \dim \ker T - \dim \operatorname{coker} T \in \mathbb{Z}$.

Remark 1.1. If $T \in \mathcal{L}(B_1, B_2)$, then ker T is a closed subspace of B_1 . However, im T need not necessarily be closed: take $B_1 = B_2 = C([0, 1])$ and $(Tf)(x) = \int_0^x f(y) \, dy$.

So this is an algebraic condition. However, this implies an analytic condition on T:

Proposition 1.1. If $T \in \mathcal{L}(B_1, B_2)$ and dim coker $T < \infty$, then im T is closed.

Proof. We may assume T is injective, for otherwise, we can consider $\widetilde{T} : B_1/\ker T \to B_2$ sending $x + \ker T \mapsto Tx$; then $\operatorname{im} \widetilde{T} = \operatorname{im} T$, and \widetilde{T} is injective. Let $\dim \operatorname{coker} T = n < \infty$, and let $x_1, \ldots, x_n \in B_2$ be such that $x_1 + \operatorname{im} T, \ldots, x_n + \operatorname{im} T$ form a basis for coker T. Let $S : \mathbb{C}^n \to B_2$ send $(a_1, \ldots, a_n) \mapsto \sum_{j=1}^n a_j x_j$. Then S is injective, and $B_2 = \operatorname{im} T \oplus \operatorname{im} S$. It follows that $T_1 : B_1 \oplus \mathbb{C}^n \to B_2$ sending $(x, a) \mapsto Tx + Sa$ is a bijection. By the open mapping theorem, T_1 is a linear homeomorphism. Then $\operatorname{im} T = T_1(B_1 \oplus \{0\}) \subseteq B_2$ is closed. \Box

1.2 Behavior of the index under perturbation

If dim $B_j < \infty$ for j = 1, 2, then

 $\operatorname{ind} T = \dim \ker T - (\dim B_2 - \dim \operatorname{im} T) = \dim B_1 - \dim B_2.$

Remarkably, for Fredholm operators, this property also extends to a similar property in the infinite dimensional case.

Theorem 1.1. Let $T \in \mathcal{L}(B_1, B_2)$ be a Fredholm operator. If $S \in \mathcal{L}(B_1, B_2)$ is such that $||S||_{\mathcal{L}(B_1, B_2)}$ is sufficiently small, then T + S is Fredholm, and $\operatorname{ind}(T + S) = \operatorname{ind} T$.

To prove this, we have a lemma.

Lemma 1.1. Let B be a Banach space, and let $S \in \mathcal{L}(B, B)$ be such that ||S|| < 1. Then 1 - S has an inverse (so ind(1 - S) = 0).

Proof. The Neumann series $R = \sum_{k=0}^{\infty} S^k$ converges in $\mathcal{L}(B, B)$, and R(1-S) = (1-S)R = 1.

Remark 1.2. If $T \in \mathcal{L}(B_1, B_2)$ is invertible and ||S|| is small, then T + S is invertible: $T + S = T(1 + T^{-1}S)$ is invertible if $||S|| < 1/||T^{-1}||$. To prove the theorem, we will reduce to this case.

Proof. Write $n_+ = \dim \ker T$ and $n_- = \dim \operatorname{coker} T$. Let $R_- : \mathbb{C}^{n_-} \to B_2$ be injective and such that $B_2 = \operatorname{im} T \oplus R_-(\mathbb{C}^{n_-})$ (as we have constructed before). Let e_1, \ldots, e_{n_+} be a basis for ker T, and let $\varphi_1, \ldots, \varphi_{n_+} \in B_1^*$ be such that

$$\varphi_j(e_k) = \begin{cases} 1 & j = k \\ 0 & j \neq k \end{cases}$$

for all j, k; such continuous, linear forms exist by Hahn-Banach. Let $R_+ : B_1 \to \mathbb{C}^{n_+}$ send $x \mapsto (\varphi_1(x), \ldots, \varphi_{n_+}(x))$. Then R_+ is surjective, and $R_+|_{\ker T}$ is bijective.

Let us introduce the **Grushin operator**¹

$$\mathcal{P} = \begin{bmatrix} T & R_- \\ R_+ & 0 \end{bmatrix} : B_1 \oplus \mathbb{C}^{n_-} \to B_2 \oplus \mathbb{C}^{n_+}.$$

We claim that \mathcal{P} is invertible: If $\mathcal{P}\begin{bmatrix} x\\ a_- \end{bmatrix} = 0$, then $Tx + R_-a_- = 0$ and $R_+x = 0$. Then $a_- = 0$, so $x \in \ker T$. Since R_+ is bijective on ker T, we get x = 0. For surjectivity, we want to solve $Tx + R_-a_- = y$ and $R_+x = b$. Write $y = Tz + R_-c_-$. Then $a_- = c_-$ and $x - z \in \ker T$, so $x = z + \sum \alpha_j e_j$. We can take $\alpha_j = b_j - \varphi_j(z)$ for $1 \le j \le n_+$. If ||S|| is small enough then

If ||S|| is small enough, then

$$\widetilde{\mathcal{P}} = \begin{bmatrix} T+S & R_-\\ R_+ & 0 \end{bmatrix}$$

is invertible, and we introduce the inverse

$$\mathcal{E} = \begin{bmatrix} E & E_+ \\ E_- & E_{-+} \end{bmatrix} : B_2 \oplus \mathbb{C}^{n_+} \to B_1 \oplus \mathbb{C}^{n_-}.$$

We will finish the proof next time.

¹This terminology is not necessarily standard.

2 Perturbation of Fredholm Operators and The Logarithmic Law

2.1 Perturbation of Fredholm operators

Last time, said that $T \in \mathcal{L}(B_1, B_2)$ is **Fredholm** if dim ker $T < \infty$ and dim $B_2/$ im $T < \infty$. We were proving that the Fredholm property is preserved under small perturbations.

Theorem 2.1. Let $T \in \mathcal{L}(B_1, B_2)$ be a Fredholm operator. If $S \in \mathcal{L}(B_1, B_2)$ is such that $||S||_{\mathcal{L}(B_1, B_2)}$ is sufficiently small, then T + S is Fredholm, and $\operatorname{ind}(T + S) = \operatorname{ind} T$.

Proof. Produce

$$\mathcal{P} = \begin{bmatrix} T & R_- \\ R_+ & 0 \end{bmatrix} : B_1 \oplus \mathbb{C}^{n_-} \to B_2 \oplus \mathbb{C}^{n_+},$$

where $n_{+} = \dim \ker T$ and $n_{-} = \dim \operatorname{coker} T$. We get that

$$\widetilde{\mathcal{P}} = \begin{bmatrix} T + S & R_- \\ R_+ & 0 \end{bmatrix}$$

is invertible as well, with inverse

$$\mathcal{E} = \begin{bmatrix} E & E_+ \\ E_- & E_{-+} \end{bmatrix} : B_2 \oplus \mathbb{C}^{n_+} \to B_1 \oplus \mathbb{C}^{n_-},$$

where

$$E: B_2 \to B_1, \qquad E_+: \mathbb{C}^{n_+} \to B_1, \qquad E_-: B_2 \to \mathbb{C}^{n_-}, \qquad E_{-+}: \mathbb{C}^{n_+} \to \mathbb{C}^{n_-}.$$

Since \mathcal{E} is a right inverse for $\widetilde{\mathcal{P}}$,

$$\begin{bmatrix} T+S & R_{-} \\ R_{+} & 0 \end{bmatrix} \begin{bmatrix} E & E_{+} \\ E_{-} & E_{-+} \end{bmatrix} = \begin{bmatrix} * & * \\ * & R_{+}E_{+} \end{bmatrix}.$$

This is the identity map, so $R_+E_+ = 1$ on \mathbb{C}^{n_+} . So E_+ is injective. Similarly, we get $E_-R_- = 1$ on \mathbb{C}^{n_-} , so E_- is surjective.

We claim that T + S is Fredholm. For the kernel, we have $x \in \ker(T + S) \iff (T + S)x = 0$. We can write this as

$$\widetilde{\mathcal{P}}\begin{bmatrix}x\\0\end{bmatrix} = \begin{bmatrix}0\\a_+\end{bmatrix},$$

where $a_{=} = R_{+}x \in \mathbb{C}^{n_{+}}$. Using the inverse \mathcal{E} , this is

$$\begin{bmatrix} x \\ 0 \end{bmatrix} = \mathcal{E} \begin{bmatrix} 0 \\ a_+ \end{bmatrix} = \begin{bmatrix} E_+a_+ \\ E_{-+}a_+ \end{bmatrix}.$$

So we get that $x \in \ker(T+S) \iff x = E_+a_+$ for some $a_+ \in \ker E_+$. So $E_+ : \ker E_{-+} \rightarrow \ker(T+S)$ is surjective. Since we already know E_+ is injective, we get that $\ker(T+S)$ is finite dimensional with $\dim \ker(T+S) = \dim \ker(E_{-+}) \le n_+$.

Next consider $B_2/\operatorname{im}(T+S)$: Given y,

$$(T+S)x = y \iff \widetilde{\mathcal{P}} \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} y \\ a_+ \end{bmatrix}$$
$$\iff \begin{bmatrix} x \\ 0 \end{bmatrix} = \mathcal{E} \begin{bmatrix} y \\ a_+ \end{bmatrix}.$$

So we get that $x = Ey + E_{+}a_{+}$ and $0 = E_{-}y + E_{-+}a_{+}$. We get that $y \in \operatorname{im}(T+S) \iff E_{-}y \in \operatorname{im} E_{-+}$. Now consider $B_2/\operatorname{im}(T+S) \to \mathbb{C}^{n_-}/E_{-+}$ sending $y + \operatorname{im}(T+S) \mapsto E_{-}y + \operatorname{im} E_{-+}$. This map is surjective, as E_{-} is surjective, and it is also injective. So $\operatorname{dim} \operatorname{coker}(T+S) = \operatorname{dim} \operatorname{coker} E_{-+} < \infty$.

So T + S is Fredholm, and

$$\operatorname{ind}(T+S) = \dim \ker E_{-+} - \dim \operatorname{coker} E_{-+} = \operatorname{ind} E_{-+} = n_+ - n_- = \operatorname{ind}(T).$$

Corollary 2.1. The set of Fredholm operators is open in $\mathcal{L}(B_1, B_2)$, and $T \mapsto ind(T)$ is locally constant.

The proof also gives the following:

Corollary 2.2. $T \mapsto \dim \ker T$ is upper-semicontinuous on the set of Fredholm operators.

2.2 The logarithmic law

Proposition 2.1. Let $T_1 \in \mathcal{L}(B_1, B_2)$ and $T_2 \in \mathcal{L}(B_2, B_3)$ be Fredholm. Then T_2T_1 is Fredholm, and we have the logarithmic law:

$$\operatorname{ind} T_2 T_1 = \operatorname{ind} T_2 + \operatorname{ind} T_1.$$

Proof. Consider T'_1 : ker $T_2T_1 \rightarrow \text{ker } T_2$ sending $x \mapsto T_1x$. Then ker $T'_1 = \text{ker } T_1$, so $\dim(\text{ker}(T_2T_1)/\text{ker } T_1) \leq \dim \text{ker } T_2$. So $\dim \text{ker } T_2T_1 < \infty$.

Now consider

$$0 \longrightarrow B_2/\operatorname{im} T_1 \xrightarrow{T_2'} B_3/\operatorname{im} T_2T_1 \xrightarrow{q} B_3/\operatorname{im} T_2 \longrightarrow 0,$$

where

$$T'_2(x + \operatorname{im} T_1) = T_2 x + \operatorname{im} T_2 T_1, \qquad q(x + \operatorname{im} T_2 T_1) = x + \operatorname{im} T_2.$$

The sequence is exact at $B_3/\operatorname{im} T_2T_1$: $\operatorname{im} T'_2 \subseteq \ker q$ by definition, and if $x + \operatorname{im} T_2T_1 \in \ker q$, then $x \in \operatorname{im} T_2$, so $x + \operatorname{im} T_2T_1 \in \operatorname{im} T'_2$. We have

$$\dim(\operatorname{coker}(T_2T_1)/\ker q) \leq \dim\operatorname{coker} T_2, \qquad \dim\ker q = \dim\operatorname{im} T_2' \leq \dim\operatorname{coker} T_1,$$

 $\dim \operatorname{coker}(T_2T_1) \leq \dim \operatorname{coker} T_1 + \dim \operatorname{coker} T_2.$

To compute the index, consider

$$L(t) = \begin{bmatrix} I_2 & 0\\ 0 & T_2 \end{bmatrix} \begin{bmatrix} I_2 \cos t & I_2 \sin t\\ -I_2 \sin t & I_2 \cos t \end{bmatrix} \begin{bmatrix} T_1 & 0\\ 0 & I_2 \end{bmatrix} : B_1 \oplus B_2 \to B_2 \oplus B_3, \qquad t \in \mathbb{R}, I_2 = \mathrm{id}_{B_2}.$$

This is a product of three Fredholm operators, so L(t) is Fredholm for all t and $t \mapsto \mathcal{L}(t)$ is continuous. So ind L(t) is independent of t! When t = 0,

$$L(0) = \begin{bmatrix} I_2 & 0\\ 0 & T_2 \end{bmatrix} \begin{bmatrix} T_1 & 0\\ 0 & I_2 \end{bmatrix} = \begin{bmatrix} T_1 & 0\\ 0 & T_2 \end{bmatrix},$$

so ind $L(0) = \operatorname{ind} T_1 + \operatorname{ind} T_2$. When $t = -\pi/2$, we get

$$L(-\pi/2) = \begin{bmatrix} 0 & -I_2 \\ T_2 T_1 & 0 \end{bmatrix}.$$

 So

$$L(-\pi/2)\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}-y\\T_2T_1x\end{bmatrix},$$

which gives ker $L(-\pi/2) = \ker T_2T_1 \oplus \{0\}$. We get ind $L(-\pi/2) = \operatorname{ind}(T_2T_1)$. Since the index is locally constant, we get the logarithmic law.

3 The Fredholm-Riesz Theorem

3.1 The Fredholm-Riesz theorem

Theorem 3.1 (Fredholm-Riesz). Let B be a Banach space, and let $T \in \mathcal{L}(B, B)$ be compact. Then 1 - T is Fredholm, and ind(1 - T) = 0.

Remark 3.1. If *B* is a Hilbert space, we can prove this more easily by using the fact that compact operators can be approximated by finite rank operators.

Proposition 3.1. Let $T \in \mathcal{L}(B, B)$ be compact. Then

- 1. $\ker(1-T)$ is finite dimensional.
- 2. im(1-T) is closed.
- *Proof.* 1. Let $x_n \in \ker(1 T)$ with $||x_n|| \leq 1$. Then $x_n = Tx_n$ has a convergent subsequence. Then the identity map on $\ker(1-T)$ is compact, so dim $\ker(1-T) < \infty$ (by Riesz's theorem).
 - 2. Let $y \in \overline{\operatorname{im}(1-T)}$, and let $x_n \in B$ be such that $y_n = (1-T)x_n \to y$. Consider $\operatorname{dist}(x_n, \operatorname{ker}(1-T)) = \operatorname{inf}_{z \in \operatorname{ker}(1-T)} ||x_n z||$. There exists some $z_n \in \operatorname{ker}(1-T)$ realizing this infimum: $||x_n z_n|| = \operatorname{dist}(x_n, \operatorname{ker}(1-T))$.

We claim that the sequence $(x_n - z_n)$ is bounded: otherwise, $||x_n - z_n|| \to \infty$ along a subsequence. Let $w_n = \frac{x_n - z_n}{||x_n - z_n||}$, so

$$(1-T)w_n = \frac{(1-T)(x_n - z_n)}{\|x_n - z_n\|} = \frac{\eta_n}{\|x_n - z_n\|} \to 0.$$

Passing to a subsequence, we may assume that $Tw_n \to v \in B$ and then $w_n \to v$, where $v \in \ker(1-T)$. Now

$$\operatorname{dist}(w_n, \operatorname{ker}(1-T)) = \inf_{z \in \operatorname{ker}(1-T)} \frac{\|x_n - z_n - z\|}{\|x_n - z_n\|} = \frac{\operatorname{dist}(x_n, \operatorname{ker}(1-T))}{\|x_n - z_n\|} = 1$$

for all n. This proves the claim.

Passing to a subsequence, we may assume that $T(x_n - z_n) \to \ell \in B$. Also, $y_n = (1-T)(x_n - z_n) \to y$, so $x_n - z_n \to y + \ell = g$. Since T is continuous, $(1-T)g = \lim_{n\to\infty} (1-T)(x_n - z_n) = y$. So $y \in im(1-T)$.

3.2 Adjoints of inclusions and quotients

To show that dim coker $< \infty$, we will use duality arguments:

Definition 3.1. If B_1, B_2 are Banach spaces with duals B_1^*, B_2^* and bilinear maps $\langle x, \xi \rangle_j$: $B_j \times B_j^* \to \mathbb{C}$ and if $T \in \mathcal{L}(B_1, B_2)$, then the **adjoint** $T^*\mathcal{L}(B_2^*, B_1^*)$ is defined by

$$\langle Tx,\eta\rangle_2 = \langle x,T^*\eta\rangle_1 \qquad \forall x\in B_1,\eta\in B_2^*.$$

Definition 3.2. If B is a Banach space and $W \subseteq B$ is a closed subspace, the **annihilator** $W^o \subseteq B^*$ is given by

$$W^o = \{\xi \in B^* : \langle x, \xi \rangle = 0 \ \forall x \in W\}.$$

Proposition 3.2. Let B be a Banach space, and let $W \subseteq B$ be a closed subspace.

- 1. Let $i: W \to B$ be the inclusion map. Then $i^*: B^* \to W^*$ vanishes on W^o and induces an isometric bijection $B^*/W^o \to W^*$.
- 2. Let $q: B \to B/W$ be the quotient map. Then the adjoint $q^*: (B/W)^* \to B^*$ is an isometry with the range W^o .
- *Proof.* 1. We have $\langle ix, \xi \rangle = \langle x, i^* \xi \rangle$, so $i^* \xi$ is the restriction of ξ to W. So ker $i^* = W^o$. $i^* : B^* \to W^*$ is surjective by Hahn-Banach.
 - 2. We have $\langle qx, \eta \rangle = \langle x, q^*\eta \rangle$, so $q^* : (B/W)^* \to B^*$ sends $q^*\eta$ to $x \mapsto \langle qx, \eta \rangle$. So if $q^*\eta = 0$, then $\eta = 0$; i.e. q^* is injective. Also, im $q^* \subseteq W^o$, and in fact, im $q^* = W^o$: If $\xi \in W^o$, define η by $\langle qx, \eta \rangle = \langle x, \xi \rangle$ and $\xi = q^*\eta$. Check that the norms are equal. \Box

3.3 Proof of the Fredholm-Riesz theorem

Recall that $T \in \mathcal{L}(B, B)$ is compact. We want to show that $\operatorname{coker}(1 - T)$ is finite dimensional, and we know that it is closed.

Proof. Apply $(B/W)^* \cong W^o$ with $W = \operatorname{im}(1-T)$.

$$(\mathrm{im}(1-T))^o = \{\xi \in B^* : \langle (1-T)x, \xi \rangle = 0 \ \forall x \in B\} = \mathrm{ker}(1-T^*).$$

 T^* is compact, so dim $(im(1-T))^o < \infty$. This shows that $(coker(1-T))^* \cong ker(1-T^*)$, so dim $coker(1-T) = dim ker(1-T^*) < \infty$. So 1-T is Fredholm.

Finally, for $0 \le t \le 1$,

$$ind(1-T) = ind(1-tT) = ind 1 = 0.$$

4 Sums of Fredholm and Compact Operators and The Toeplitz Index Theorem

4.1 Fredholm plus compact is Fredholm

Last time, we proved the Riesz-Fredholm theorem, which says that if $T \in \mathcal{L}(B, B)$ is compact, then 1 + T is a Fredholm operator with ind(1 + T) = 0.

Proposition 4.1. An operator $T \in \mathcal{L}(B_1, B_2)$ is Fredholm if and only if there exists a map $S \in \mathcal{L}(B_2, B_1)$ such that TS - 1 and ST - 1 are compact on B_2 and B_1 , respectively.

Proof. (\Leftarrow): Let $S \in \mathcal{L}(B_2, B_1)$ be such that $ST = 1 + K_1$ and $TS = 1 + K_2$, where K_j is compact on B_j for j = 1, 2. Then ker $T \subseteq \text{ker}(1 + K_1)$, so ker T is finite-dimensional. On the other hand, im $T \supseteq \text{im}(1 + K_2)$: Let $Y \subseteq B_2$ be such that dim $Y = \text{dim coker}(1 + K_2)$, so $B_2 = \text{im}(1 + K_2) \oplus Y$. If $Y = \text{im } T \cap Y$, so $Y = Y_1 \oplus Y_2$, then $B_2 = \text{im } T \oplus Y_2$. So we get dim coker $T = \text{dim } Y_2 \leq \text{dim } Y = \text{dim coker}(1 + K_2) < \infty$.

 (\Longrightarrow) : We follow the Grushin approach: If $n_+ = \dim \ker T$ and $n_- = \dim \operatorname{coker} T$, then there exist an injective $R_- : \mathbb{C}^{n_-} \to B_2$ and a surjective $R_+ : B_1 \to \mathbb{C}^{n_+}$ such that the Grushin operator

$$\mathcal{P} = \begin{bmatrix} T & R_- \\ R_+ & 0 \end{bmatrix} : B_1 \oplus \mathbb{C}^{n_-} \to B_2 \oplus \mathbb{C}^{n_+}$$

is invertible with inverse

$$\mathcal{E} = \begin{bmatrix} E & E_+ \\ E_- & E_{-+} \end{bmatrix}.$$

Moreover,

$$1 = \mathcal{P}\mathcal{E} = \begin{bmatrix} R & R_- \\ R_+ & 0 \end{bmatrix} \begin{bmatrix} E & E_+ \\ E_- & E_{-+} \end{bmatrix} = \begin{bmatrix} TE + R_-E_- & * \\ * & * \end{bmatrix},$$

so $TE + R_-E_- = 1$ on B_2 , where R_-E_- has finite rank. Similarly, using $1 = \mathcal{EP}$, we get $ET - 1 = -E_+R_+$, where E_+R_+ has finite rank on B_1 .

Remark 4.1. If $S \in \mathcal{L}(B_2, B_1)$ is such that ST - 1 and TS - 1 are compact, then S is Fredholm, and $\operatorname{ind}(ST) = 0$. The logarithmic law gives $\operatorname{ind}(ST) = \operatorname{ind} S + \operatorname{ind} T$, so we get $\operatorname{ind} S = -\operatorname{ind} T$.

Theorem 4.1 (Fredholm theory). Let $T \in \mathcal{L}(B_1, B_2)$ be Fredholm, and let $S \in \mathcal{L}(B_1, B_2)$ be compact. Then T + S is Fredholm, and $\operatorname{ind}(T + S) = \operatorname{ind} T$.

Proof. Let $E \in \mathcal{L}(B_2, B_1)$ be such that TE-1, ET-1 are compact. Then (T+S)E-1 and S(T+S)-1 are compact, so T+S is Fredholm. Moreover, $\operatorname{ind}(T+S) = \operatorname{ind}(T+tS) = \operatorname{ind} T$ for all $t \in [0, 1]$.

4.2 The Toeplitz index theorem

Here is a nice example of a Fredholm operator.

Example 4.1. Consider $L^2((0, 2\pi)) \cong L^2(\mathbb{R}/2\pi\mathbb{Z})$. If $u \in L^2((0, 2\pi))$ and the Fourier coefficients are $\hat{u}(n) = \frac{1}{2\pi} \int_0^{2\pi} u(\theta) e^{-in\theta} d\theta$, then $u(\theta) \sim \sum_{n \in \mathbb{Z}} \hat{u}(n) e^{in\theta}$. Consider the **Hardy space** $H = \{u \in L^2 : \hat{u}(n) = 0 \text{ for } n < 0\}$, which is a closed subspace of $L^2((0, 2\pi))$. The associated orthogonal projection $\pi : L^2 \to H$ sends $\sum_{n \in \mathbb{Z}} \hat{u}(n) e^{in\theta} \mapsto \sum_{n \geq 0} \hat{u}(n) e^{in\theta}$. Let $f \in L^{\infty}((0, 2\pi))$. Associated to f is the **Toeplitz operator** $\operatorname{Top}(f) : H \to H$ given by $\operatorname{Top}(f)u = \pi(fu)$. Then $\operatorname{Top}(f) \in \mathcal{L}(H, H)$, and $\|\operatorname{Top}(f)\|_{\mathcal{L}(H,H)} \le \|f\|_{\infty}$.

Theorem 4.2 (Toeplitz index theorem). If $f \in C(\mathbb{R}/2\pi\mathbb{Z})$ is nonvanishing, then Top(f) is Fredholm on H, and ind Top(f) = -winding number(f).

To define the winding number, write $f(\theta) = r(\theta)e^{i\varphi(\theta)}$, where r > 0 and r, φ are continuous on $[0, 2\pi]$. Then the winding number of f is $\frac{\varphi(2\pi)-\varphi(0)}{2\pi}$.

Proof. To prove the Fredholm property of $\operatorname{Top}(f)$, we will try to invert $\operatorname{Top}(f)$ with a compact error. We claim that if $f, g \in C(\mathbb{R}/2\pi\mathbb{Z})$, then $\operatorname{Top}(f) \operatorname{Top}(f) = \operatorname{Top}(fg) + K$, where K is compact. Write $\operatorname{Top}(f) = \pi M_f$ and $\operatorname{Top}(f) = \pi M_g$, where M means a multiplication operator. Then

$$\pi M_f \pi M_g = \pi (\pi M_f + [M_f, \pi]) M_g = \pi^2 M_{fg} + \pi [M_f, \pi] M_g = \text{Top}(fg) + K,$$

where $[M_f, \pi] = M_f \pi - \pi M_f$ is the commutator $L^2 \to L^2$ and $K = \pi [M_f, \pi] M_g$. To show that K is compact, it suffices to show that $[M_f, \pi]$ is compact on L^2 .

Case 1: If $f(\theta) = e^{in\theta}$, with $n \in \mathbb{Z}$, then

$$[M_{e^{in\theta}}\pi]e^{ik\theta} = (e^{in\theta}\circ\pi - \pi\circ e^{in\theta})e^{ik\theta}$$

If n > 0,

$$= \begin{cases} 0 & k \ge 0\\ -\pi(e^{i(n+k)\theta}) & k < 0, \end{cases}$$

where the latter expression = 0 if k < -n. So $[M_{e^{in\theta}}, \pi]$ is of finite rank on L^2 .

We will finish the proof next time.

5 The Toeplitz Index Theorem and Analytic Fredholm Theory

5.1 The Toeplitz index theorem

Last time, we had the Hardy space $H \subseteq L^2(\mathbb{R}/2\pi\mathbb{Z})$ of functions u with $\hat{u}(n) = 0$ for n < 0. Given $f \in C(\mathbb{R}/2\pi\mathbb{Z})$, we defined $\text{Top}(f) = \pi M_f$.

Theorem 5.1 (Toeplitz index theorem). If $f \in C(\mathbb{R}/2\pi\mathbb{Z})$ is nonvanishing, then Top(f) is Fredholm on H, and ind Top(f) = -winding number(f).

Proof. We had the claim that for all $f, g \in C(\mathbb{R}/2\pi\mathbb{Z})$, then $\operatorname{Top}(f) \operatorname{Top}(g) - \operatorname{Top}(fg)$ is compact. We saw that this is $\pi[M_f, \pi]M_g$, so we only need to show that $[M_f, \pi]$ is compact from $L^2 \to L^2$. If $f(\theta) = e^{in\theta}$ (or more generally, a trigonometric polynomial), then $[M_f, \pi]$ is of finite rank; we showed this last time.

In general, given $f \in C(\mathbb{R}/2\pi\mathbb{Z})$, let f_n be trigonometric polynomials such that $f_n \to f$ uniformly on $\mathbb{R}/2\pi\mathbb{Z}$. Then

$$\|[M_f, \pi] - [M_{f_n}, \pi]\| = \|[M_{f-f_n}, \pi]\| \le 2\|f - f_n\|_u \to 0.$$

So $[M_f, \pi]$ is compact, and we get the claim.

If $f \neq 0$, we take g = 1/f, so Top(f) Top(g) - I is compact. So Top(f) is Fredholm. To compute ind Top(f), observe that if g, h are continuous (and nonvanishing), then

$$\operatorname{ind} \operatorname{Top}(gh) = \operatorname{ind}(\operatorname{Top}(g)\operatorname{Top}(h)) = \operatorname{ind} \operatorname{Top}(g) + \operatorname{ind} \operatorname{Top}(f)$$

Write $f(\theta) = r(\theta)e^{-\varphi(\theta)}$ with r, φ continuous on $[0, 2\pi]$ and r > 0. Then

$$\operatorname{ind} \operatorname{Top}(f) = \operatorname{ind} \operatorname{Top}(r) + \operatorname{ind} \operatorname{Top}(e^{i\varphi})$$

We have ind $\text{Top}(r) = \text{ind Top}(r_t)$ for $0 \le t \le 1$, where $r_t(\theta) = (1 - t)r(\theta) + t \ge 0$. So ind Top(r) = 0.

$$=$$
 ind Top $(e^{i\varphi})$.

To compute ind Top $(e^{i\varphi})$, consider $f_t(\theta) = e^{(1-t)i\varphi(\theta) + iNt\theta}$ for $0 \le t \le 1$, where $N = \frac{\varphi(2\pi) - \varphi(0)}{2\pi}$ is the winding number. Then f_t is 2π -periodic and continuous in t. We get

ind
$$\operatorname{Top}(e^{i\varphi}) = \operatorname{ind} \operatorname{Top}(f_t)$$

= ind $\operatorname{Top}(e^{iN\theta})$

In general, if T is Fredholm, $\operatorname{ind} T = \dim \ker T - \dim \ker T^*$.

$$= \dim \ker \operatorname{Top}(e^{iN\theta}) - \dim \ker \operatorname{Top}(e^{iN\theta})^*$$

To find the adjoint, we have $\langle \operatorname{Top}(f)u, v \rangle_{L^2} = \langle \pi(fu), v \rangle_{L^2} = \langle fu, v \rangle_{L^2} = \langle u, \overline{f}v \rangle_{L^2} = \langle \pi u, \overline{f}v \rangle_{L^2} = \langle u, \operatorname{Top}(\overline{f})v \rangle$. So $\operatorname{Top}(f)^* = \operatorname{Top}(\overline{f})$.

$$= \dim \ker \operatorname{Top}(e^{iN\theta}) - \dim \ker \operatorname{Top}(e^{-iN\theta}).$$

Here, we have

$$\dim \ker \operatorname{Top}(e^{iN\theta}) = \begin{cases} 0 & N \ge 0\\ -N & N < 0 \end{cases}$$

Altogether, we get

$$\operatorname{ind} \operatorname{Top}(f) = -N.$$

5.2 Analytic Fredholm Theory

Definition 5.1. Let $\Omega \subseteq \mathbb{C}$. A holomorphic family $T(z) \in \mathcal{L}(B_1, B_2)$ for $z \in \Omega$ is a family such that $\Omega \to \mathcal{L}(B_1, B_2)$ sending $z \mapsto T(z)$ is holomorphic (as an operator-valued function).

Remark 5.1. We can define holomorphic operator-valued functions in two ways: $z \mapsto T(z)$ is holomorphic if

- 1. For all $z \in \Omega$, $\left\|\frac{T(z+h)-T(z)}{h} T'(z)\right\| \to 0$ as $h \to 0$ for some $T'(z) \in \mathcal{L}(B_1, B_2)$.
- 2. For every $x \in B_1$ and $\xi \in B_2^*$, $z \mapsto \langle T(z)x, \xi \rangle$ is holomorphic.

Theorem 5.2 (analytic Fredholm theory). Let $\Omega \subseteq \mathbb{C}$ be open and connected, and let $T(z) \in \mathcal{L}(B_1, B_2)$ for $z \in \Omega$ be a holomorphic family of Fredholm operators. Assume that there exists a $z_0 \in \Omega$ such that $T(z_0) : B_1 \to B_2$ is bijective. Then the set

$$\Sigma = \{ z \in \Omega : T(z) \text{ is not bijective} \}$$

 $is \ discrete.$

Proof. Notice first that $\operatorname{ind} T(z) = \operatorname{ind} T(z_0) = 0$ for all z. Let $z_1 \in \Omega$, and write $n_0(z_1) = \dim \ker T(z_1) = \dim \operatorname{coker} T(z_1)$. Introduce the Grushin operator

$$\mathcal{P}_{z_1}(z) = \begin{bmatrix} T(z) & R_-(z_1) \\ R_+(z_1) & 0 \end{bmatrix} : B_1 \oplus \mathbb{C}^{n_0(z_1)} \to B_2 \oplus \mathbb{C}^{n_0(z_1)}.$$

We know that $\mathcal{P}_{z_1}(z_1)$ is invertible. So there is a connected neighborhood $N(z_1) \subseteq \Omega$ of z_1 such that $\mathcal{P}_{z_1}(z)$ is bijective for $z \in N(z_1)$, depending holomorphically on z. Let

$$\mathcal{E}_{z_1}(z) = \mathcal{P}_{z_1}(z)^{-1} : B_2 \oplus \mathbb{C}^{n_0(z_1)} \to B_1 \oplus \mathbb{C}^{n_0(z_1)}$$
$$\mathcal{E}_{z_1}(z) = \begin{bmatrix} E(z) & E_+(z) \\ E_-(z) & E_{-+}(z) \end{bmatrix},$$

depending holomorphically on z.

We claim that for $z \in N(z_1)$, $T(z) : B_1 \to B_2$ is bijective $\iff E_{-+}(z) : \mathbb{C}^{n_0} \to \mathbb{C}^{n_0}$ is bijective. This will allow us to analyze invertibility of T(z) via a holomorphic function, det $E_{-+}(z)$.

6 Consequences of Analytic Fredholm Theory

6.1 Analytic Fredholm theory

Last time, we were proving the analytic Fredholm theory.

Theorem 6.1 (analytic Fredholm theory). Let $\Omega \subseteq \mathbb{C}$ be open and connected, and let $T(z) \in \mathcal{L}(B_1, B_2)$ for $z \in \Omega$ be a holomorphic family of Fredholm operators. Assume that there exists a $z_0 \in \Omega$ such that $T(z_0) : B_1 \to B_2$ is bijective. Then the set

$$\Sigma = \{z \in \Omega : T(z) \text{ is not bijective}\}$$

is discrete.

Proof. Let $z_1 \in \Omega$. Then there is a neighborhood $N(z_1)$ of z_1 such that for every $z \in N(z_1)$, the Grushin operator

$$\mathcal{P}_{z_1}(z) = \begin{bmatrix} T(z) & R_-(z) \\ R_+(z) & 0 \end{bmatrix}$$

is bijective with the inverse

$$\mathcal{E}_{z_1}(z) = \begin{bmatrix} E(z) & E_+(z) \\ E_-(z) & E_{-+}(z) \end{bmatrix} : B_2 \oplus \mathbb{C}^{n_0} \to B_1 \oplus \mathbb{C}^{n_0}.$$

We claim that for $z \in N(z_1)$, $T(z) : B_1 \to B_2$ is bijective $\iff E_{-+}(z) : \mathbb{C}^{n_0} \to \mathbb{C}^{n_0}$ is bijective.² Check:

$$\begin{bmatrix} T & R_{-} \\ R_{+} & 0 \end{bmatrix} \begin{bmatrix} E & E_{+} \\ E_{-} & E_{-+} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies TE + R_{-}E_{-} = 1, TE_{+} + R_{-}E_{-+} = 0.$$

If E_{-+}^{-1} exists, then $R_{-} = -TE_{+}E_{-+}^{-1}$, so

$$T(E - E_{-}E_{-+}^{-1}E_{-}) = 1.$$

So T^{-1} exists and

$$T^{-1}(z) = E(z) - E_{+}(z)E_{-+}(z)^{-1}E_{-}(z).$$

Using that $\mathcal{EP} = 1$, so $E_-R_- = 1$ and $E_-T + E_{-+}R_+ = 0$, we get T^{-1} exists $\implies E_{-+}$ exists.

We get for $z \in N(z_1)$ that T(z) is invertible if and only if det $E_{-+}(z) \neq 0$. The function det $E_{-+}(z)$ is holomorphic on $N(z_1)$. So either det $E_{-+}(z) \equiv 0$, or det $E_{-+}(z) \neq 0$ in a punctured neighborhood of z_1 . Let $\Omega_1 = \{z \in \Omega : T(z') \text{ is invertible } \forall z' \neq z \text{ near } z\}$ and $\Omega_2 = \{z \in \Omega : T(z') \text{ is not invertible } \forall z' \neq z \text{ near } z\}$. Then each Ω_j is open, $\Omega_1 \cup \Omega_2 = \Omega$, and $\Omega_1 \neq \emptyset$ (as $z_0 \in \Omega_1$). Since Ω is connected, $\Omega_1 = \Omega$ and thus, $\Sigma = \{z \in \Omega : T(z) \text{ is not invertible}\}$ is discrete.

²What we lose from this reduction is that if T(z) has some simple dependence of z (e.g. polynomial), $E_{-+}(z)$ may not have a simple dependence. In some contexts, the operator E_{-+} is called the effective Hamiltonian.

Remark 6.1. The map $\Omega \setminus \Sigma \to \mathcal{L}(B_2, B_1)$ sending $z \mapsto T(z)^{-1}$ is holomorphic. Consider $T(z)^{-1}$ for z in a punctured neighborhood of $w \in \Sigma$: We have

$$T^{-1}(z) = E(z) - E_{+}(z)E_{-+}(z)^{-1}E_{-}(z),$$

where E, E_+, E_- are all holomorphic in a neighborhood of w. We have that

$$E_{-+}(z)^{-1} = \frac{\text{holomorphic near } w}{\det E_{-+}(z)},$$

so we have a Laurent expansion

$$E_{-+}(z)^{-1} = \frac{R_{-N_0}}{(z-w)^{N_0}} + \dots + \frac{R_{-1}}{z-w} + \operatorname{Hol}(z),$$

where $1 \leq N_0 < \infty$ and the R_j are of finite rank. Combining these formulas, we get that $z \mapsto T(z)^{-1}$ has a pole of order N_0 at z = w:

$$T(z)^{-1} = \frac{A_{-N_0}}{(z-w)^{N_0}} + \dots + \frac{A_{-1}}{z-w} + Q(z), \qquad Q(z) \text{ holomorphic near } w,$$

where for $1 \leq j \leq N_0$, the $A_{-j} \in \mathcal{L}(B_2, B_1)$ n be expressed in terms of R_{-N_0}, \ldots, R_{-1} and are therefore of finite rank.

6.2 Application: the residue of the resolvent

Here is an example/special case of the analytic Fredholm theory.

Assume that $B_1 \subseteq B_2$ with continuous inclusion, and let T(z) = T - z for $z \in \Omega$, where T is some operator. Assume that T(z) is Fredholm for each z and that $T(z_0)^{-1}$ exists for some $z_0 \in \Omega$. We get a Laurent expansion for the resolvent $(T - z)^{-1}$ at $w \in \Sigma$:

$$(z-T)^{-1} = \frac{A_{-N_0}}{(z-z_0)^{N_0}} + \dots + \frac{A_{-1}}{z-w} + Q(z), \qquad Q(z)$$
 holomorphic near w .

for $0 < |z - w| \ll 1$.

Proposition 6.1. The operator $\Pi := A_{-1}$ is a projection³ on B_2 which commutes with T (on B_1).

Proof. Integrate the Laurent expansion along $\gamma_r = \partial D(w, r)$ for $0 < r \ll 1$. Then

$$\Pi = \frac{1}{2\pi i} \int_{\gamma_r} (z - T)^{-1} dz.$$

³This is sometimes called the Riesz projection.

We claim that $\Pi^2 = \Pi$: Let $0 < r_1 < r_2 \ll 1$, and write

$$\Pi^{2} = \int_{\gamma_{r_{2}}} \int_{\gamma_{r_{1}}} (z - T)^{-1} (\tilde{z} - T)^{-1} \frac{dz}{2\pi i} \frac{d\tilde{z}}{2\pi i}$$

Using $(\tilde{z} - T)^{-1} - (z - T)^{-1} = (\tilde{z} - T)^{-1}(z - \tilde{z})(z - T)^{-1}$, we have

$$= \int_{\gamma_{r_2}} \int_{\gamma_{r_1}} \frac{1}{\widetilde{z} - z} (z - T)^{-1} \frac{dz}{2\pi i} \frac{d\widetilde{z}}{2\pi i} - \int_{\gamma_{r_2}} \int_{\gamma_{r_1}} \frac{1}{\widetilde{z} - z} (\widetilde{z} - T)^{-1} \frac{dz}{2\pi i} \frac{d\widetilde{z}}{2\pi i}$$

The second term is 0 by applying the Cauchy integral formula on the inner integral.

So we get

$$\Pi^2 = \int_{\gamma_{r_1}} \underbrace{\frac{1}{2\pi i} \int_{\gamma_{r_2}} \frac{1}{\widetilde{z} - z} d\widetilde{z}}_{=1} (z - T)^{-1} \frac{dz}{2\pi i} = \Pi.$$

Remark 6.2. We know that $T(\operatorname{Ran}\Pi) \subseteq \operatorname{Ran}\Pi \subseteq B_1$, where $\operatorname{Ran}\Pi$ is finite dimensional, and let us check that $(T - z_0)|_{\operatorname{Ran}\Pi}$ is nilpotent:

$$(T-z_0)\Pi = \frac{1}{2\pi i} \int_{\gamma_r} (T-z_0)(z-T)^{-1} dz$$

= $\underbrace{\frac{1}{2\pi i} \int_{\gamma_r} (T-z)(z-T)^{-1} dz}_{=0} + \frac{1}{2\pi i} \int_{\gamma_r} (z-z_0)(z-T)^{-1} dz}_{=0}$
= $\frac{1}{2\pi i} \int_{\gamma_r} (z-z_0)(z-T)^{-1} dz.$

It follows that

$$(T-z_0)^j \Pi = \frac{1}{2\pi i} \int_{\gamma_r} (z-z_0)^j (z-T)^{-1} dz.$$

And if $j = N_0$, we get $(T - z_0)^{N_0} \Pi = 0$, as $(z - z_0)^{N_0} (z - T)^{-1}$ is holomorphic.

7 Introduction to Unbounded Operators

7.1 Motivation from quantum mechanics

In this part of the course, we will discuss spectral theory of self-adjoint operators. We are most interested in unbounded operators, the background of which comes from quantum mechanics.

Classical mechanics: The classical phase space is $\mathbb{R}^{2n} = \mathbb{R}^n_x \times \mathbb{R}^n_{\xi}$, where x is position and ξ is momentum. Classical observables are, for example, $C^{\infty}(\mathbb{R}^{2n})$ functions.

Example 7.1. The Hamiltonian is

$$p(x,\xi) = |\xi|^2 + V(x),$$

where V(x) is a potential.

In classical dynamics, we have the Hamilton equations

$$\begin{cases} x(t) = p'_{\xi}(x,\xi) \\ \xi(t) = -p'_{x}(x,\xi) \end{cases}$$

Quantum mechanics: We have a Hilbert space $H = L^2(\mathbb{R}^n)$. Quantum observables are self-adjoint operators on H.

Example 7.2. Quantum observables corresponding to x_j and ξ_j are M_{x_j} , multiplication by x_j , and $D_{x_j} = \frac{1}{i} \partial_{x_j}$. These can not be defined on the whole space, so they will come with their own domains. Associated to p is the Schrödinger operator

$$P = -\Delta + V(x).$$

Quantum dynamics is given by the Schrödinger equation

$$i\frac{\partial u}{\partial t} = Pu, \qquad u|_{t=0} = u_0 \in L^2$$

Formally,

$$u(t) = e^{-itP}u.$$

Interpreting what it means to exponentiate an unbounded operator will be one of the points of our theory.

7.2 Unbounded operators

Let H be a complex, separable Hilbert space, let $D \subseteq H$ be a linear subspace, and let $T: D \to H$ be a linear map. Then D = D(T) is the **domain** of T. We shall always assume that T is **densely defined**, so that D(T) is dense in H. Associated to T is the **graph**⁴ of $T: G(T) = \{(x, Tx) : x \in D(T)\} \subseteq H \times H.$

Definition 7.1. We say that T is closed if G(T) is closed subspace of $H \times H$.

Definition 7.2. The operator T is **closable** if G(T) is the graph of an linear operator $\overline{T}: D(T) \to H$, called the **closure** of T.

Note that

$$D(\overline{T}) = \{ x \in H : \exists x_j \in D(T) \text{ s.t. } x_j \to x, Tx_j \text{ conv. in } H, \overline{T}x = \lim Tx_j \}.$$

 So

T is closed \iff if $x_n \in D(T), x_n \to x$, and $Tx_n \to y$, then $x \in D(T)$ and Tx = y.

On the other hand,

T is closable $\iff G(T)$ contains no element of the form (0, y) with $y \neq 0$ \iff if $x_n \in D(T), x_n \to 0$, and $Tx_n \to y$, then y = 0.

Example 7.3. Let $T = -\Delta$ on $L^2(\mathbb{R}^n)$, with $D(T) = C_0^{\infty}(\mathbb{R}^n)$. Then T is densely defined and closable: If $\varphi_n \in C_0^{\infty}$ are s.t. $\varphi \to 0$ in L^2 and $\Delta \varphi_n \to \psi \in L^2$, we want $\psi = 0$. For any $f \in C_0^{\infty}$, $\int \varphi_n f \to 0$, and integrating by parts gives $\int \Delta \varphi_n f = \int \varphi_n \Delta f \to 0$. On the other hand, $\int \Delta \varphi_n f \to \int \psi f$. We get that $\int \psi f = 0$ for all $f \in C_0^{\infty}$. So $\psi = 0$. In the language of distributions, $\varphi_n \to 0$ in $D'(\mathbb{R}^n)$, so $\Delta \varphi_n \to 0$ in D'. So $\psi = 0$.

We claim that $\overline{T} = -\Delta$ with $D(\overline{T}) = H^2(\mathbb{R}^n) = \{u \in L^2 : \partial^{\alpha} u \in L^2, |\alpha| \leq 2\}$, a **Sobolev space**. Here, $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$ is a multi-index, $\partial^{\alpha} = \partial^{\alpha_1}_{x_1} \cdots \partial^{\alpha_n}_{x_n}$, and $|\alpha| = \sum_{j=1}^n \alpha_j$. Here, $\partial^{\alpha} u \in L^2$ means that there exists some $f_{\alpha} \in L^2$ such that $\partial^{\alpha} u = f_{\alpha}$; that is,

$$(-1)^{|\alpha|} \int u \partial^{\alpha} \varphi = \int f_{\alpha} \varphi \qquad \forall \varphi \in C_0^{\infty}.$$

We have

$$D(\overline{T}) = \{ u \in L^2 : \exists \varphi_n \in C_0^\infty \text{ s.t. } \varphi_n \xrightarrow{L^2} u, \Delta \varphi_n \text{ conv. in } L^2 \}, \qquad \overline{T}u = \lim(-\Delta \varphi_n).$$

Hence, if $u \in D(\overline{T})$, then $\Delta u = \lim_n \Delta \varphi_n \in L^2$. Then

$$D(\overline{T}) \subseteq \{ u \in L^2 : \Delta u \in L^2 \} = H^2(\mathbb{R}^n),$$

⁴The idea of thinking about unbounded operators in terms of their graphs goes back to von Neumann.

as taking the Fourier transform, this is

$$D(\overline{T}) \subseteq \{ u \in L^2 : (|\xi|^2 + 1)\widehat{u} \in L^2 \}.$$

We also have $H^2(\mathbb{R}^n) \subseteq D(\overline{T})$, as $C_0^{\infty}(\mathbb{R}^n)$ is dense in $H^2(\mathbb{R}^n)$ (the norm on H^2 is given by $\|u\|_{H^2} = \sum_{|\alpha| \leq 2} \|\partial^{\alpha} u\|_{L^2}$). This is the same proof that $C_0^{\infty}(\mathbb{R}^n)$ is dense in $L^2(\mathbb{R}^n)$. We get that $T = -\Delta$ with $D(T) = H^2(\mathbb{R}^n)$ is closed and densely defined.

Next time, we will define what it means for a densely defined operator to be self-adjoint, and we will see that this operator is indeed self-adjoint.

8 Realizations of Partial Differential Operators

8.1 Maximal and minimal realizations

Last time, we considered the unbounded operator $T = -\Delta$ on $L^2(\mathbb{R}^n)$ with $D(T) = C_0^{\infty}(\mathbb{R}^n)$. We saw that $\overline{T} = -\Delta$ with domain $D(\overline{T}) = H^2(\mathbb{R}^n) = \{u \in L^2 : \Delta u \in L^2\}.$

Example 8.1. Let $\Omega \subseteq \mathbb{R}^n$ be open, and let $P = P(x, D_x)$ be a linear partial differential operator with C^{∞} coefficients:

$$P = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha}, \qquad a_{\alpha} \in C^{\infty}, D_{x_j} = \frac{1}{i} \partial_{x_j}.$$

The operator P_{Ω} on $L^{2}(\Omega)$ with $D(P_{\Omega}) = C_{0}^{\infty}(\Omega)$ is densely defined and closable: if $u_{n} \in C_{0}^{\infty}(\Omega)$ with $u_{n} \xrightarrow{L^{2}} 0$ and $Pu_{n} \xrightarrow{L^{2}} v$, then v = 0. The closure of P_{Ω} , denoted by P_{\min} , is called the **minimal realization** of P_{Ω} with domain $D(P_{\min}) = \{u \in L^{2} : \exists u_{n} \in C_{0}^{\infty} \text{ s.t. } u_{n} \to u, Pu_{n} \text{ conv. in } L^{2}\}.$

If $u \in D(P_{\min})$, then $Pu \in L^2(\Omega)$, where Pu is defined in the sense of distributions. So $D(P_{\min}) \subseteq \{u \in L^2 : Pu \in L^2\}$. We also introduce the **maximal realization** P_{\max} of P_{Ω} , given by $D(P_{\max}) = \{u \in L^2 : Pu \in L^2\}$ with $P_{\max}u = Pu$ for all $u \in D(P_{\max})$. We get $P_{\Omega} \subseteq P_{\min} \subseteq P_{\max}$, meaning $D(P_{\Omega}) \subseteq D(P_{\min}) \subseteq D(P_{\max})$ and $P_{\max} = P_{\min}$ on $D(P_{\min})$. Both P_{\min} and P_{\max} are closed.

8.2 Realizations of order 1 partial differential operators with smooth coefficients

Proposition 8.1. Let $P = \sum_{k=1}^{n} a_k(x) D_{x_k} + b(x)$ be an operator of order 1 on \mathbb{R}^n with $a_k, b \in C^{\infty}(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$ and $\nabla a_k \in L^{\infty}$. Then the minimal and the maximal realizations of P agree: $D(P_{\min}) = D(P_{\max})$.

Proof. Let $u \in D(P_{\max})$. We have to show that $u \in D(P_{\min})$; that is, we show there exists a sequence $u_n \in C_0^{\infty}(\mathbb{R}^n)$ such that $u_n \xrightarrow{L^2} u$ and $Pu_n \xrightarrow{L^2} Pu$. Notice first that if $\chi \in C_0^{\infty}(\mathbb{R}^n)$ with $\chi = 1$ near 0 and $\chi_j(x) = \chi(jx)$ for $j = 1, 2, \ldots$, then $\chi_j u \xrightarrow{L^2} u$. We may write $P(\chi_j u) = \chi_j Pu + [P, \chi_j]u$. The first term goes to Pu in L^2 , and

$$[P,\chi_j] = (P \circ \chi_j - \chi_j P)u = \sum_{k=1}^n a_k(x) \frac{1}{j} (D_{x_k}\chi)(x/j) \xrightarrow{L^2} 0.$$

Thus, when proving that $u \in D(P_{\min})$ can be approximated by C_0^{∞} functions, we may assume that u has compact support.

Regularize u: Let $0 \leq \varphi \in C_0^{\infty}(\mathbb{R}^n)$ with $\int \varphi = 1$, let $\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \varphi(x/\varepsilon)$, and let $J_{\varepsilon}u = (u * \varphi_{\varepsilon})(x) \in C_0^{\infty}(\mathbb{R}^n)$. Then $J_{\varepsilon} \xrightarrow{L^2} u$. Compute:

$$P(I_{\varepsilon}u) = J_{\varepsilon}Pu + [P, J_{\varepsilon}]u$$

Since Pu is compactly supported and in L^2 , the first term goes to Pu in L^2 . Let's get rid of the *b* term:

$$[b, J_{\varepsilon}]u = \underbrace{b(J_{\varepsilon}u)}_{\to bu} - \underbrace{J_{\varepsilon}(bu)}_{bu} \xrightarrow{L^2} 0.$$

Since $[P, J_{\varepsilon}] = \sum [a_k D_{x_k}, J_{\varepsilon}] + [b, J_{\varepsilon}]$ it now suffices to show that $[a_k D_{x_k}, J_{\varepsilon}]u \to 0$ in L^2 for all $u \in L^2$. This is Friedrich's lemma. \Box

Lemma 8.1 (Friedrich's lemma). Let $u \in L^2(\mathbb{R}^n)$ and $a_k \in C_0^{\infty}(\mathbb{R}^n)$. Then

$$[a_k D_{x_k}, J_{\varepsilon}] u \xrightarrow{L^2} 0.$$

Proof. Observe first that if $u \in C_0^{\infty}(\mathbb{R}^n)$, then

$$[a_k D_{x_k}, J_{\varepsilon}]u = a_k D_{x_k}(J_{\varepsilon}u) - J_{\varepsilon}(a_k D_{x_k}u)$$

Since $a_k D_{x_k} u \in C_0^{\infty}$, the second term goes to $a_j D_{x_k} u$ in L^2 . The first term also goes to $a_k D_{x_k} u$ in L^2 . So this goes to 0.

It only remains to show that $||[a_k D_{x_k}, J_{\varepsilon}]u||_{L^2} \leq C||u||_{L^2}$ for $0 < \varepsilon \leq 1$ and $u \in C_0^{\infty}$. Compute

$$\begin{split} W_{\varepsilon}(x) &= [a_k D_{x_k}, J_{\varepsilon}] u(x) \\ &= a_k D_{x_k} \int u(y) \frac{1}{\varepsilon^n} \varphi\left(\frac{x-y}{\varepsilon}\right) - \int a_k(x-y) D_{x_k} u(x-y) \frac{1}{\varepsilon^n} \varphi\left(\frac{y}{\varepsilon}\right) \, dy \\ &= \int a_k(x) u(x-\varepsilon y) \frac{1}{\varepsilon} (D_k \varphi)(y) - \int a_k(x-\varepsilon y) \underbrace{(D_{x_k} u)(x-\varepsilon y)}_{=-1/\varepsilon D_{y_k} (u(x-\varepsilon y))} \varphi(y) \, dy \end{split}$$

Integrate by parts in the second integral.

$$= \int a_k(x)u(x-\varepsilon y)\frac{1}{\varepsilon}(D_{x_k}\varphi)(y) - \int a_k(x-\varepsilon y)u(x-\varepsilon y)D_k\varphi.$$

So we get

$$|W_{\varepsilon}(x)| \le C_a |u| * \varphi_{\varepsilon}.$$

9 Adjoints of Unbounded Operators

9.1 Adjoints

Last time, we showed that if $P = \sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}$ on $L^{2}(\Omega)$ where $\Omega \subseteq \mathbb{R}^{n}$ is open and $a_{\alpha} \in C^{\infty}(\Omega)$, then we get a **minimal realization**: P_{\min} with $D(P_{\min}) = \{u \in L^{2} : \exists \varphi_{n} \in C_{0}^{\infty}(\Omega) : \varphi_{n} \to u, P\varphi_{n} \text{ conv.} \}$ given by $P_{\min}u = \lim_{n \to \infty} P\varphi_{n}$. We also defined the **maximal realization** P_{\max} with $D(P_{\max}) = \{u \in L^{2} : Pu \in L^{2}\}$, where Pu is taken in the sense of distributions. Here, we have $P_{\min} \subseteq P_{\max}$, where both of these are closed operators.

Recall the definition of an adjoint: In a Hilbert space H, if $T \in \mathcal{L}(H, H)$, the **adjoint** $T^* \in \mathcal{L}(H, H)$ is defined by $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in H$. For unbounded operators, we will define this, paying attention to the domains.

Definition 9.1. Let $T: D(T) \to H$ be densely defined. We define the **adjoint** T^* by

$$D(T^*) = \{ v \in H : \exists f \in H \text{ s.t. } \langle Tu, v \rangle = \langle u, f \rangle \ \forall u \in D(T) \},$$
$$T^*v = f.$$

Remark 9.1. The requirement that T is densely defined is crucial to this definition. D(T) is dense, so f is unique if it exists. In particular, $\langle Tu, v \rangle = \langle u, T^*v \rangle$ for all $u \in D(T)$ and $v \in D(T^*)$.

Remark 9.2. By the Riesz representation theorem,

$$D(T^*) = \{ v \in H : \exists C = C_v > 0 \text{ s.t. } | \langle Tu, v \rangle | \le C ||u||, u \in D(T) \}.$$

9.2 Examples: adjoints of differential operators

Example 9.1. Let $\Omega \subseteq \mathbb{R}^n$ be open, $P = \sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}$ with $a_{\alpha} \in C^{\infty}(\Omega)$, where $D = \frac{1}{i} \partial$. Let $P_{\Omega} = P$ with $D(P_{\Omega}) = C_0^{\infty}(\Omega)$. Let's compute P_{Ω}^* .

First, associated to P is the **formal adjoint** P^* defined by $\langle Pu, v \rangle_{L^2} = \langle u, P^*v \rangle_{L^2}$ for all $u, v \in C_0^{\infty}(\Omega)$ (such an operator exists for any differential operator). We can calculate the formula using integration by parts:

$$P^*v = \sum_{|\alpha| \le m} D_x^{\alpha}(\overline{a_{\alpha}(x)v}).$$

So P^* is a differential operator of order m with C^{∞} coefficients.

To compute the adjoint P^*_{Ω} , we have

$$D(P_{\Omega}^*) = \{ v \in L^2 : \exists f \in L^2 \text{ s.t. } \langle Pu, v \rangle_{L^2} = \langle u, f \rangle \ \forall u \in C_0^{\infty}(\Omega) \}$$
$$= \{ v \in L^2 : P^*v = f \in L^2 \},$$

where P^*v is taken in the sense of distributions. In other words, $D(P_{\Omega}^*) = \{v \in L^2 : P^*v \in L^2\} = D(P_{\max}^*)$, the maximal realization of the formal adjoint, and $P_{\Omega}^*v = P^*v$.

Sometimes, we can give a nice local description of the domain of the adjoint.

Example 9.2. Assume that $P = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha}$ is elliptic in the sense that if $p(x,\xi) =$ $\sum_{|\alpha|=m} a_{\alpha}(x)\xi^{\alpha}$ for $x \in \Omega, \xi \in \mathbb{R}^n$, then $p(x,\xi) \neq 0$ for all $x \in \Omega, \xi \neq 0$. Then we have

$$\{v \in L^2 : P^* v \in L^2\} \subseteq H^m_{\text{loc}}(\Omega) = \{u \in L^2_{\text{loc}}(\Omega) : \partial^\alpha u \in L^2_{\text{loc}}(\Omega) \; \forall |\alpha| \le m\},$$

a local Sobolev space.

9.3 The graph of the adjoint

Proposition 9.1. Let $T: D(T) \to H$ be densely defined. The graph of the adjoint is

$$G(T^*) = [V(\overline{G(T)})]^{\perp},$$

where $V: H \times H \to H \times H$ sends $(u, v) \mapsto (v, -u)$.

Remark 9.3. Taking the closure is a matter of taste. Since we are taking the orthogonal complement, it does not matter whether or not we close the graph or not, since the result will be closed.

Proof. When $u \in D(T)$ and $(v, w^*) \in H \times H$, we have

$$\langle V(u, Tu), (v, w^*) \rangle_{H \times H} = \langle Tu, v \rangle - \langle u, w^* \rangle.$$

The right hand side is 0 for all $u \in D(T)$ if and only if $v \in D(T^*), T^*v = w^*$. This is equivalent to $(v, w^*) \in G(T^*)$. The left hand side is 0 for all $u \in D(T)$ iff $(v, w^*) \in G(T^*)$. [V(G(T))]. So $G(T^*) = [V(G(T))]^{\perp} = [V(\overline{G(T)})]^{\perp}$.

Corollary 9.1. T^* is closed.

Remark 9.4. If densely defined operators $T_1 \subseteq T_2$ in the sense that $G(T_1) \subseteq G(T_2)$, then $T_2^* \subseteq T_1^*$.

Is T^* densely defined?

Proposition 9.2. T is closable if and only if $D(T^*)$ is dense. In this case, $(T^*)^* = \overline{T}$.

Proof. (\implies): Assume there is a nonzero $w \in H$ such that $w \perp D(T^*)$. Then for every $v \in D(T^*),$

$$\langle (0,w), (T^*v, -v) \rangle_{H \times H} = 0,$$

so $(0,w) \in [V(G(T^*))]^{\perp} = V(G(T^*)^{\perp})$. Recall that $G(T^*) = [V(\overline{G(T)})]^{\perp}$, so $(0,w) \in [V(G(T^*))]^{\perp}$ $V(V(\overline{G(T)}))$. $V^2 = -1$, so $(0, w) \in G(T)$. So w = 0, as T is closable.

 (\Leftarrow) : The proof is a similar computation.

10 Symmetric and Self-Adjoint Operators

10.1 Adjoints of closable operators

If $T: D(T) \to H$ is densely defined, we defined the adjoint T^* with $G(T^*) = [V(G(T))]^{\perp}$, where V(u, v) = (v, -u). Let's finish a proof we started last time.

Proposition 10.1. T is closable if and only if T^* is densely defined.

Proof. (\implies): We did this last time.

 (\Leftarrow) : If $D(T^*)$ is dense, then $(T^*)^*$ is a closed operator such that

$$F(T^{**}) = [V(G(T^*))]^{\perp} = V(G(T^*)^{\perp}) = V(V(\overline{G(T)})) = \overline{G(T)},$$

where we have used $V^2 = -1$. So T is closable, and $T^{**} = \overline{T}$.

10.2 Symmetric and self-adjoint operators

Definition 10.1. Let $S : D(S) \to H$ be densely defined. We say that S is symmetric if $\langle Sx, y \rangle = \langle x, Sy \rangle$ for all $x, y \in D(S)$.

Example 10.1. $S = -\Delta$ on $L^2(\mathbb{R}^n)$ with $D(S) = C_0^{\infty}(\mathbb{R}^n)$ is symmetric. However, we will see that this operator is not self-adjoint.

S is symmetric if and only if $S \subseteq S^*$.

Proposition 10.2. If S is symmetric, then S is closable and \overline{S} is symmetric.

Proof. If $u_n \in D(S)$ with $u_n \to 0$ and $Su_n \to \ell$, then $\langle u_n, Sv \rangle = \langle Su_n, v \rangle \to \langle \ell, v \rangle$. On the other hand $\langle u_n, Sv \rangle \to 0$, for all $v \in D(S)$. So $\ell = 0$, and S is closable.

If $S \subseteq S^*$, where S^* is densely defined, then $\overline{S} = S^{**} \subseteq S^* = \overline{S}^*$. So \overline{S} is symmetric. \Box

Given a symmetric operator S, we have two natural closed extensions: \overline{S} and S^* .

Definition 10.2. A linear, densely defined operator $T: D(T) \to H$ is called **self-adjoint** if $T = T^*$.

Note that this means that $D(T) = D(T^*)$. Any self-adjoint operator is closed, since adjoints are closed. We have

$$T \text{ is self-adjoint } \iff T \text{ is symmetric and } D(T) = D(T^*)$$
$$\iff \langle Tx, y \rangle = \langle x, Ty \rangle \quad \forall x, y \in D(T), \text{ and}$$
$$\text{if } (x, y) \in H \times H \text{ with } \langle Tz, x \rangle = \langle z, y \rangle \ \forall z \in D(T) \implies x \in D(T).$$

Proposition 10.3. Let S be closed and symmetric. Then S^* is symmetric, so S is selfadjoint. *Proof.* S^* is symmetric, so $S^* \subseteq S^{**} = S$, as S is closed. Also, $S \subseteq S^*$, so S is self-adjoint.

Example 10.2. Let $H = L^2(\mathbb{R}^n)$, and let $m : \mathbb{R}^n \to \mathbb{R}$ be Lebesgue measurable. Let $D(A) = \{f \in L^2 : mf \in L^2\}$ and Af = mf for all $f \in D(A)$. We claim that A is self-adjoint.

Check first that D(A) is dense in L^2 : For any $f \in L^2$, $\frac{f}{1+|m|} \in L^2$, as well. So if $g \in L^2$ with $g \perp D(A)$,

$$\int g \frac{f}{1+|m|} \, dx = 0,$$

which means that $\frac{g}{1+|m|} = 0$, giving g = 0.

A is symmetric, as m is real. Now let $(g,h) \in L^2 \times L^2$ be such that $\langle Af, g \rangle = \langle f, h \rangle$ for all $f \in D(H)$. Then for all $f \in L^2$,

$$\int \frac{mf}{1+|m|}\overline{g} = \int \frac{f}{1+|m|}\overline{h},$$

 \mathbf{SO}

$$\int \left(\frac{m}{1+|m|}\overline{g} - \frac{\overline{h}}{1+|m|}\right)f = 0$$

for all $f \in L^2$. So mg = h, which gives $g \in D(A)$.

Example 10.3. Let $T = -\Delta$ on $L^2(\mathbb{R}^n)$ with $D(T) = H^2(\mathbb{R}^n) = \{u \in L^2 : \Delta u \in L^2\} = \{u \in L^2 : \partial^{\alpha} u \in L^2 \forall |\alpha| \le 2\}$. Then T is self-adjoint.

T is symmetric: $\langle -\Delta u, v \rangle_{L^2} = \langle u, -\Delta v \rangle_{L^2}$ for all $u, v \in H^2$. This is true for $u, v \in C_0^{\infty}(\mathbb{R}^n)$, which is dense in $H^2(\mathbb{R}^n)$. Alternatively we could prove this by taking the Fourier transform, where T acts as a multiplication operator.

Let $(g,h) \in L^2 \times L^2$ be such that $\langle -\Delta u, g \rangle_{L^2} = \langle u, h \rangle$ for all $g, h \in H^2$. In particular, if $u \in C_0^\infty$, we get $-\Delta g = h \in L^2$ (taken in the weak sense). Then $g \in H^2$, and $Tg = -\Delta g = h$.

10.3 von Neumann's extension theory for symmetric operators

Let $S: D(S) \to H$ be a closed, symmetric (densely defined) operator. Can S be extended to a self-adjoint operator? If $S \subseteq T = T^*$, then $T^* \subseteq S^*$, so we have an operator between S and S^* in general. If S is symmetric, these are the same.

Proposition 10.4. Let S be closed and symmetric. Then for any $z \in \mathbb{C} \setminus \mathbb{R}$, $S - z1 : D(S) \to H$ is injective, has closed range, and $||(S - z)u|| \ge |\operatorname{Im} z|||u||$ for $u \in D(S)$.

Proof. Write z = x + iy. Then

$$||(S-z)u||^2 = \langle (S-x)u + iyu, (S-x)u + iyu \rangle$$

$$= \|(S - x)u\|^2 + y^2 \|u\|^2$$

$$\ge y^2 \|u\|^2,$$

so S - z is injective. $\operatorname{Im}(S - z)$ is closed: If $y \in \overline{\operatorname{Im}(S - z)}$, there exist $x_n \in D(S)$ such that $(S - z)x_n \to y$. By this inequality, $x_n \to x \in H$. Since (S - z) is closed, $x \in D(S)$.

Here is the idea due to von Neumann: Study the Cayley transform of S, T = $(S+i)(S-i)^{-1}$.

11 The Cayley Transform of Symmetric Operators

11.1 The Cayley transform

Let $S: D(S) \to H$ be closed, symmetric, and densely defined. We have shown that $S \pm i$ are injective iff $\operatorname{Im}(S \pm i)$ is closed, and $||(S+i)x||^2 = ||(S-i)x||^2 (= ||Sx||^2 + ||x||^2)$.

Definition 11.1. The Cayley transform T of S is the operator $T = (S + i)(S - i)^{-1}$: $\operatorname{Im}(S - i) \to \operatorname{Im}(S + i).$

The above norm calculation shows that T is an isometric bijection.

Proposition 11.1. T - 1 is injective, Im(T - 1) = D(S), and $S = i(T + 1)(T - 1)^{-1}$: $D(S) \to H$.

Proof. If $y \in \text{Im}(S-i)$ with y = (S-i)x, then

$$(T-1)y = (S+i)x - (S-i)x = 2ix$$

We get T-1 is injective and Im(T-1) = D(S). Similarly,

$$(T+1)y = (S+i)x + (S-i)x = 2Sx,$$

 \mathbf{SO}

$$2S\frac{1}{2i}(T-1)y = (T+1)y.$$

Then

Conversely, let
$$H_1, H_2 \subseteq H$$
 be closed subspaces, and let $T : H_1 \to H_2$ be a unitary
map be such that $\text{Im}(T-1)$ is dense in H . We claim that $T-1$ is injective: If $(T-1)y = 0$
for $y \in H_1$, then for $z \in H_1$,

 $S = i(T+1)(T-1)^{-1}.$

$$\langle y, (T-1)z \rangle = \langle y, Tz \rangle - \langle y, z \rangle = \langle Ty, Tz \rangle - \langle y, z \rangle = 0$$

Define $S: D(S) = \text{Im}(T-1) \to H$ by $S = i(T+1)(T-1)^{-1}$. We claim that S is symmetric. For $x = (T-1)y \in D(S)$,

$$\begin{split} \langle Sx, x \rangle &= i \left\langle (T+1)y, (T-1)y \right\rangle \\ &= i(\|Ty\|^2 - \langle Ty, y \rangle + \langle y, Ty \rangle - \|y\|^2) \\ &= i(-\langle Ty, y \rangle + \langle y, Ty \rangle) \in \mathbb{R}. \end{split}$$

We get $\langle Sx, x \rangle = \langle x, Sx \rangle$ for all $x \in D(S)$. Polarize this identity (i.e. x = y + z, y + iz) to get that S is symmetric.

We claim that S is closed. If $(x, z) \in \overline{G(S)}$, there is a sequence $y_n \in H_1$ such that $(T-1)y_n \to x$ and $i(T+1)y_n \to z$. So $y_n \to y \in H_1$. $Ty_n \to Ty$, so $(T-1)y_n \to (T-1)y_n \to (T-1)y_n \to z \in D(S)$. Then

$$i(T+1)y_n \to i(T+1)y = i(T+1)(T-1)^{-1}x = Sx = z.$$

Finally, let T_1 be the Cayley transform of S, $T_1 : \text{Im}(S-i) \to \text{Im}(S+i)$ with $T_1 = (S+i)(S-i)^{-1}$. If $y \in D(S) = \text{Im}(T-1)$ with y = (T-1)x ($x \in H_1$), then

(S-i)y = (S-i)(T-1)x = i(T+1)x - i(T-1)x = 2ix.

So $D(T_1) = H_1 = D(T)$. Now we check

$$T_1 x = \frac{1}{2i} T_1 (S-i) y = \frac{1}{2i} (S+i) y = \frac{1}{2i} (\underbrace{S(T-1)x}_{i(T+1)x} + i(T-1)x) = Tx.$$

So the Cayley transform of S is T.

We summarize the results in a proposition.

Proposition 11.2. Let S be closed, symmetric, and densely defined. Then the Cayley transform $T : \text{Im}(S-i) \to \text{Im}(S+i)$ sending $(S-i)x \mapsto (S+i)x$ is unitary, Im(T-1) = D(S), T-1 is injective, and $S = i(T+1)(T-1)^{-1}$. Conversely, if H_1, H_2 are closed subspaces of $H, T : H_1 \to H_2$ is unitary, and Im(T-1) is dense, then T is the Cayley transform of a unique symmetric, closed, densely defined operator S.

11.2 Deficiency subspaces

Now we are ready to check whether a closed, symmetric, and densely defined operator is self-adjoint.

Definition 11.2. Let S be closed, symmetric, and densely defined. The **deficiency sub**spaces associated to S are $D_{\pm} := (\text{Im}(S \pm i))^{\perp} = \text{ker}(S^* \mp i)$. The **deficiency indices** are $n_{\pm} = \dim D_{\pm}$ (Hilbert space dimension).

The deficiency indices measure the extent to which S may fail to be self-adjoint. We know $D_{\pm} \subseteq D(S)$. Introduce also

$$D(S^*)|_{D_{\pm}} =: \widehat{D}_{\pm} = \{ (x, S^*x) : x \in D_{\pm} \} = \{ \langle x, \pm ix \rangle : x \in D_{\pm} \}.$$

Theorem 11.1. Let S be closed, symmetric, and densely defined. Then

$$G(S^*) = G(S) \oplus \widehat{D}_+ \oplus \widehat{D}_-,$$

where the direct sum is orthogonal.

Proof. Check first that $G(S) \perp \widehat{D}_{\pm}$ (we check +): if $x \in D(S)$ and $y_{\pm} \in D_{\pm}$

$$\langle (x, Sx), (y_+, iy_+) \rangle = \langle x, y_+ \rangle + \langle Sx, iy_+ \rangle = \langle x, y_+ \rangle + \underbrace{\langle x, iS^*y_+ \rangle}_{=\langle x, iiy_+ \rangle} = 0.$$

Also, $\widehat{D}_+ \perp \widehat{D}_-$:

$$\langle (y_+, iy_+), (y_-, -iy_-) \rangle = \langle y_+, y_- \rangle + \langle iy_+, (1/i)y_- \rangle = 0.$$

By orthogonality, $G(S) \oplus \widehat{D}_+ \oplus \widehat{D}_-$ is a closed subspace of $G(S^*)$. It remains to show that if (y, S^*y) is orthogonal to $G(S), \widehat{D}_{\pm}$, then y = 0. We will show this next time. \Box

12 Extending Symmetric Operators to Self-Adjoint Operators

12.1 Graph of the adjoint of a symmetric operator

Suppose we have a closed, symmetric, densely defined operator $S : D(S) \to H$. We introduced the **deficiency subspaces** $D_{\pm} = (\text{Im}(S \pm i))^{\perp} = \text{ker}(S^* \mp i)$ and the graphs $\widehat{D}_{\pm} = G(S^*)|_{D_{\pm}}$.

Last time, were proving the following theorem.

Theorem 12.1. Let S be closed, symmetric, and densely defined. Then

$$G(S^*) = G(S) \oplus \widehat{D}_+ \oplus \widehat{D}_-,$$

where the direct sum is orthogonal.

Proof. It remains to show that if $(y, S^*y) \perp G(S), \widehat{D}_{\pm}$, then y = 0.

First, if $(y, S^*y) \perp G(S)$, then $\langle (y, S^*y), (x, Sx) \rangle = 0$ for all $x \in D(S)$. Then $\langle Sx, S^*y \rangle + \langle x, y \rangle = 0$ for all $x \in D(S)$. So $S^*y \in D(S^*)$ and $S^*(S^*y) = -y$. So $((S^*)^2 + 1)y = 0$. We get $(S^* - i)(S^* + i)y = 0$, so $(S^* + i)y \in D_+$.

If $(y, S^*y) \perp D_+$, then $\langle (y, S^*y), (x, ix) \rangle = 0$ for all $x \in D_+$. We get $\langle y, x \rangle + \langle S^*y, ix \rangle = 0$, so $-i \langle (S^* + i)y, x \rangle = 0$ for all $x \in D_+$. So $(S^* + i)y = 0$.

Similarly, $(S^*-i)y \in D_-$ (changing the order in the factorization). Then $(y, S^*y) \perp D_-$, so $(S^*-i)y = 0$. So we get y = 0.

12.2 Conditions for extending symmetric operators

Corollary 12.1. A symmetric, closed operator $S : D(S) \to H$ is self-adjoint if and only if the deficiency indices $n_+ = n_- = 0$, or equivalently, $\text{Im}(S \pm i) = H$. Equivalently, the Cayley transform of S is unitary : $H \to H$.

In general, we have the following:

Corollary 12.2. A symmetric, closed operator $S : D(S) \to H$ has a self-adjoint extension if and only if the Cayley transform T can be extended to a unitary map: $H \to H$.

Proof. This follows from our correspondence between symmetric operators and their Cayley transforms. \Box

Using the full strength of this result we have proven, we get the original result of von Neumann's extension theory.

Theorem 12.2 (von Neumann). A closed, densely defined, symmetric operator $S : H \to H$ has a self-adjoint extension if and only if the deficiency indices are equal.

Proof. Assume first that T can be extended to a unitary map $U: H \to H$ (so $U|_{\mathrm{Im}(S-i)} = T$). Write $H = D(T) \oplus D_{-}$ and $H = \mathrm{Im}(T) \oplus D_{+}$ (orthogonal decompositions). It follows that $U|_{D^{-}}: D_{-} \to D_{+}$ is a bijection, so the deficiency indices are equal: $n_{-} = n_{+}$.

Conversely, assume that $n_- = n_+$. Let $(e_j^+)_{j \in J}, (e_j^-)_{j \in J}$ be orthonormal bases for D_+ and D_- , respectively. Let $T_1: D_- \to D_+$ take $\sum_{j \in J} x_j e_j^- \mapsto \sum_{j \in J} x_j e_j^+$. T_1 is unitary, so the map $U: H \to H$ sending $(y + z) \mapsto Ty + T_1 z$ (where $y \in D(T), z \in D_-$) is a unitary extension of T.

Remark 12.1. We say that closed, symmetric operator S is **maximal** if it has no strict symmetric extension. If S is self-adjoint, it is maximal. In general, S is maximal if and only if at least one of the deficiency indices equals 0.

12.3 Example: Extending the Schrödinger operator

Example 12.1. The Schrödinger operator: $H = L^2(\mathbb{R}^n)$, and $P = -\Delta + V(x)$, where $V \in L^2_{loc}(\mathbb{R}^n; \mathbb{R})$. Equipped with the domain $C^{\infty}_0(\mathbb{R}^n)$, P becomes symmetric and densely defined.

We claim that P has a self-adjoint extension. We have to check that $n_+ = \dim \ker(P^* - i) = \dim \ker(P^* + i) = n_-$. Here, $D(P^*) = \{u \in L^2 : Pu \in L^2\}$, where Pu is taken in the sense of distributions; $Vu \in L^1_{loc}$, so it makes sense as a distribution. The complex conjugation map $\Gamma : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ sending $u \mapsto \overline{u}$ satisfies: $\Gamma(D(P^*)) \subseteq D(P^*)$ and $[\Gamma, P^*] = 0$. Since $\Gamma : D_- \to D_+$ is a bijection, the deficiency indices are equal. (Here, we use that P is real.)

13 Examples of Self-Adjoint Extensions

13.1 Self-adjoint extensions of differential operators

Let $S : D(S) \to H$ be symmetric, closed, and densely defined. Last time, we made the observation that S is self-adjoint $\iff \operatorname{Im}(S \pm i) = H \iff \ker(S^* \mp i) = \{0\}$. We also saw that S has a self-adjoint extension $\iff \dim \operatorname{Im}(S + i)^{\perp} = \dim \operatorname{Im}(S - i)$.

Example 13.1. Let $H = L^2(\mathbb{R}^n)$, and let P = P(D) be a linear, differential operator with constant, real coefficients:

$$P = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}, \qquad a_{\alpha} \in \mathbb{R}, D = \frac{1}{i} \partial.$$

Let P_{\min} be the minimal realization of P: $P_{\min} = \overline{P|_{C_0^{\infty}}}$. Then P_{\min} is closed, densely defined, and symmetric: if $u, v \in C_0^{\infty}$,

$$\langle Pu, v \rangle_{L^2} = \int Pu\overline{v} \, dx = \sum_{|\alpha| \le m} \int a_{\alpha} D^{\alpha} u\overline{v} \, dx = \langle u, Pv \rangle_{L^2}$$

We claim that P_{\min} is self-adjoint. Check that $\ker(P_{\min}^* \pm i) = \{0\}$: Here, $D(P_{\min}^*) = \{u \in L^2 : Pu \in L^2\}$. If $u \in D(P_{\min})$, then we get a differential equation:

$$(P_{\min}^* \pm i)u = 0 \iff (P(D) \pm i)u = 0$$

Take the Fourier transform:

$$\mathcal{F}[(P(D)\pm i)u]=0\iff \left(\sum_{|\alpha|\leq m}a_{\alpha}\xi^{\alpha}\pm i\right)\widehat{u}(\xi)=0.$$

Then $\hat{u} = 0$, so u = 0.

Since $P_{\text{max}} = P_{\text{min}}^*$, we get that $P_{\text{max}} = P_{\text{min}}$. So P has only one realization, which is self-adjoint. That is, it only has one self-adjoint extension.

Example 13.2. Let $H = L^2((0,\infty))$, and let $P(D) = D = \frac{1}{i} \frac{d}{dx}$. Let $P_{\min} = \overline{P|_{C_0^{\infty}}}$. Compute the deficiency indices: $(P(D) \pm i)i = 0$ for $u \in L^2((0,\infty))$, so

$$\left(\frac{1}{i}\frac{d}{dx}-i\right)u=0\iff u'+u=0\iff u(x)=Ce^{-x}\in L^2.$$

So $n_{+} = 1$. For the + case, we have

$$\left(\frac{1}{i}\frac{d}{dx}+i\right)u=0\iff u'-u=0\iff u(x)=Ce^x.$$

But such a $u \notin L^2((0,\infty))$, so $n_- = 0$.

Thus, P_{\min} is maximal, symmetric, and has no self-adjoint extensions.

Remark 13.1. We have omitted the argument that these differential equations have no nonclassical solutions. We have

$$u' + u = 0 \iff (e^x u)' = 0,$$

where this derivative is in the distributional sense. We use the fact that if $u \in D'(\mathbb{R})$ with u' = 0, then u is constant.

Remark 13.2. In this example, $D(P_{\min}^*) = \{u \in L^2 : Pu \in L^2\} = H^1((0,\infty)).$

Essentially self-adjoint operators 13.2

Definition 13.1. Let $S: D(S) \to H$ be symmetric and densely defined. We say that S is essentially self-adjoint if \overline{S} is self-adjoint.

Here is an example.

Theorem 13.1 (Essential self-adjointness of the Schrödinger operator with a semibounded potential). Let $P = P(x, D) = -\Delta + q(x)$, where $q \in C(\mathbb{R}^n; \mathbb{R})$. Let P_0 be the minimal realization of P: $P_0 = \overline{P|_{C_0^{\infty}}}$, which is closed, symmetric and densely defined. Assume that $q \geq -C$ on \mathbb{R}^n . Then P_0 is self-adjoint (i.e. P(x, D) is essentially self-adjoint).

Remark 13.3. $-\Delta \ge 0$: If $u \in C_0^{\infty}$, $\langle -\Delta u, u \rangle = \int -\Delta u \overline{u} = \int |\nabla u|^2 \ge 0$. We cannot let the operator tend to $-\infty$ unchecked, which is why we need this semiboundedness condition. This condition can be relaxed, but there needs to be some condition.

If q were actually bounded, this theorem is easier to prove. One can prove that a self adjoint operator plus a bounded self-adjoint operator is still self-adjoint (and with the same domain).

Proof. $D(P_0^*) = \{ u \in L^2 : Pu = (-\Delta + q)u \in L^2 \}$, and $P_0^*u = Pu$ for $u \in D(P_0^*)$. We shall show that P_0^* is symmetric; that is, $\langle u, P_0^* u \rangle_{L^2} \in \mathbb{R}$ for all $u \in D(P_0^*)$. First, if $u \in D(P_0^*)$, then $\Delta u \in L^2_{\text{loc}}$. So $u \in H^2_{\text{loc}} = \{u \in L^2_{\text{loc}} : \partial^{\alpha} u \in L^2_{\text{loc}} \forall |\alpha| \leq 2\}$. In particular, $\nabla u \in L^2_{\text{loc}}$. We claim that if $u \in D(P_0^*)$, then $\nabla u \in L^2(\mathbb{R}^n)$. We may assume that $u \in D(P_0^*)$ is

real (by considering real and imaginary parts separately). Consider

$$\int \psi_t(x) i P u \, dx = \int \psi_t(x) u(-\Delta + q) u \, dx,$$

where $\psi_t(x) = \psi(tx), \ 0 \le \psi \in C_0^{\infty}(\mathbb{R}^n)$ is a cutoff which is 1 near 0. The idea is that once we introduce this cutoff, we can integrate by parts. We will get something like $\int \psi_t |\nabla u|^2$ and will try to control this uniformly in t to use Fatou's lemma.

We will finish the proof next time.

14 Essential Self-Adjointness of Schrödinger Operators and Perturbations of Self-Adjoint Operators

14.1 Essential self-adjointness of Schrödinger operators

Last time, we were proving the following theorem.

Theorem 14.1 (Essential self-adjointness of the Schrödinger operator with a semibounded potential). Let $P = P(x, D) = -\Delta + q(x)$, where $q \in C(\mathbb{R}^n; \mathbb{R})$. Let P_0 be the minimal realization of $P: P_0 = \overline{P|_{C_0^{\infty}}}$, which is closed, symmetric and densely defined. Assume that $q \geq -C$ on \mathbb{R}^n . Then P_0 is self-adjoint (i.e. P(x, D) is essentially self-adjoint).

Proof. Let $P_0 = \overline{P_{C_0^{\infty}}}$, so $D(P_0^*) = \{u \in L^2 : Pu \in L^2\} \subseteq H^2_{\text{loc}}$. We shall show that P_0^* is symmetric, which is equivalent to $\langle u, P_0^* u \rangle_{L^2} \in \mathbb{R}$ for all $u \in D(P_0^*)$.

We claim that for every $u \in D(P_0^*)$, $\nabla u \in L^2(\mathbb{R}^n)$. It suffices to show this claim when u is real (by splitting up real and imaginary parts). Consider

$$\int \psi_t^2 u P_0^* u \, dx = \int \psi_t^2 u P u \, dx,$$

where $\psi_t(x) = \psi(tx)$ for $t > 0, 0 \le \psi \in C_0^{\infty}$, and $\psi(x) = 1$ in $|x| \le 1$. Write

$$\int \psi_t^2(x) u P u \, dx = \int \psi_t^2 u (-\Delta + q) u \, dx$$
$$= \int \psi_t^2 u (-\Delta u) + \int \psi_t^2 q u^2$$

Integrating by parts in the first integral (we can integrate u by parts by regularizing it, but we omit that argument),

$$= \int \nabla(\psi_t^2 u) \cdot \nabla u + \int \psi_t^2 q u^2$$

We get

$$\underbrace{\int \psi_t^2(x) u P u \, dx}_{\leq \|u\|_{L^2} \|Pu\|_{L^2}} = \int \psi_t^2 |\nabla u|^2 + \int 2\psi_t \nabla \psi_t \cdot \nabla u + \underbrace{\int q\psi_t u^2}_{-C \int \psi_t^2 u^2 \geq -C \|u\|^2}.$$

Let $I(T) = \int \psi_t |\nabla u|^2$. We get that

$$I(T) \le O(1) + 2 \underbrace{\int |\psi_t \nabla u \cdot u \nabla \psi_t|}_{\le CI(t)^{1/2} ||u||_{L^2}}$$

$$\leq O(1) + CI(t)^{1/2}.$$

This implies that $I(t) \leq O(1)$ because $CI(t)^{1/2} \leq C^2 \frac{1}{\varepsilon} + \varepsilon I(T)$ for all $\varepsilon > 0$ by the AM-GM inequality. The claim follows by Fatou's lemma.

Let $u \in D(P_0^*)$ be complex-valued. Then

$$\int \psi_t^2 u \overline{Pu} = \underbrace{\int \psi_t^2 |\nabla u|^2}_{\in \mathbb{R}} + \underbrace{2 \int \psi_t u \nabla \psi_t \cdot \overline{\nabla u}}_{\leq 2 \|\nabla \psi_t\|_{L^\infty} \|u\|_{L^2} \|\nabla u\|_{L^2} \to 0} + \underbrace{\int q \psi_t^2 |u|^2}_{\in \mathbb{R}}$$

so the imaginary part of this goes to 0 as $t \to \infty$. Also, $\int \psi_t^2 u \overline{Pu} \to \int u \overline{Pu}$ as $t \to \infty$, so $\int u \overline{Pu} = \langle u, P_0^* u \rangle_{L^2} \in \mathbb{R}$.

Example 14.1. The quantum harmonic oscillator is the case of $q(x) = |x|^2$, so $P = -\Delta + |x|^2$ is essentially self-adjoint on C_0^{∞} . One can show that the domain is $D(P_0) = \{u \in L^2 : x^{\alpha} \partial^{\beta} \in L^2, |\alpha + \beta| \leq 2\}.$

Remark 14.1. If S is essentially self-adjoint, then $\overline{S} = (\overline{S})^* = S^*$. So the closure is the adjoint. In particular, there is only 1 realization.

14.2 Perturbations of self-adjoint operators

Let $A : D(A) \to H$. Then A is closed if and only if D(A) is a Banach space with respect to the **graph norm**: $||u||_{D(A)} := ||u|| + ||Au||$.

Definition 14.1. Let A, B be linear operators on H. We say that B is A-bounded (or relatively bounded with respect to A) if $D(B) \supseteq D(A)$ and if there are constants $a, b \ge 0$ such that

$$||Bu|| \le a ||Au|| + b ||u||, \qquad \forall u \in D(A)$$

The infimum of all such constants a is the **relative bound** of B with respect to A.

Proposition 14.1. Let A be closed, and let B be A-bounded with a relative bound < 1. Then A + B is closed on D(A).

Proof. We have:

$$||Bu|| \le a ||Au|| + b ||u||, \qquad \forall u \in D(A)$$

with a < 1. Check that the norms $u \mapsto ||u|| + ||Au||$ and $u \mapsto ||u|| + ||(A + B)u||$ are equivalent on D(A). So A + B is closed.

Theorem 14.2 (Kato-Rellich⁵). Let A be self-adjoint, and let B be symmetric and Abounded with relative bound < 1. Then A + B is self-adjoint on D(A).

⁵Kato and Rellich both proved this result around the same time, independently of each other.

Proof. A + B is closed, symmetric, and densely defined on D(A). So we only need to show that the deficiency indices are 0: that is, we want $\text{Im}(A + B \pm i) = H$. In fact, we will show that there exists some $\lambda \in \mathbb{R} \setminus \{0\}$ such that $\text{Im}(A + B \pm i\lambda) = H$. \Box

We will prove this next time.

15 The Kato-Rellich Theorem

15.1 The Kato-Rellich theorem

Last time, we were in the middle of proving the Kato-Rellich theorem.

Theorem 15.1 (Kato-Rellich). Let A be self-adjoint, and let B be symmetric and Abounded with relative bound < 1. Then A + B is self-adjoint on D(A).

Proof. A + B is closed, symmetric, and densely defined on D(A). So we only need to show that the deficiency indices are 0: that is, we want $\text{Im}(A + B \pm i) = H$. In fact, we will show that there exists some $\lambda \in \mathbb{R} \setminus \{0\}$ such that $\text{Im}(A + B \pm i\lambda) = H$.

As A is self-adjoint, this is true when B = 0. We have

$$||(A+i\lambda)u||^2 = ||Au||^2 + \lambda^2 ||u||^2 \quad \forall u \in D(A).$$

So we know that $A + i\lambda : D(A) \to H$ is bijective, and

$$||v||^{2} = ||A(A+i\lambda)^{-1}v||^{2} + \lambda^{2} ||(A+i\lambda)^{-1}v||^{2} \qquad \forall v \in H.$$

So $(A+i\lambda)^{-1}, A(A+i\lambda)^{-1} \in \mathcal{L}(H,H)$ with

$$||(A+i\lambda)^{-1}|| \le \frac{1}{|\lambda|}, \qquad ||A(A+i\lambda)^{-1}|| \le 1.$$

Next by the A-boundedness of B, there exists some $0 \le a < 1$ such that for any $u \in H$,

$$||B(A+i\lambda)^{-1}u|| \le a||A(A+i\lambda)^{-1}u|| + b||(A+i\lambda)^{-1}u||$$
$$\le a||u|| + \frac{b}{|\lambda|}||u||$$
$$= \left(a + \frac{b}{|\lambda|}\right)||u||$$

Pick λ large enough to get

$$= \left(\frac{1+a}{2}\right) \|u\|_{*}$$

Thus, the operator $1 + B(A + i\lambda)^{-1}$ is invertible in $\mathcal{L}(H, H)$. We get that

$$A + B + i\lambda = (1 + B(A + i\lambda)^{-1})(A + i\lambda) : D(A) \to H$$

is bijective. So A + B is self-adjoint on D(A).

Here is an application:

Example 15.1 (Schrödinger operator with a Coulomb potential). Let $H = L^2(\mathbb{R}^3)$, and let $P_0 = -\Delta$ (self-adjoint with $D(P_0) = H^2(\mathbb{R}^3)$). Our potential is $V(x) = \frac{\gamma}{|x|}$ with $\gamma \in \mathbb{R}$.

We claim that $P = P_0 + V$ is self-adjoint on L^2 with domain $D(P) = H^2$. We may assume that $|\gamma|$ is small, for we can change scales: Introduce $U_{\lambda} : L^2 \to L^2$ which acts as $(U_{\lambda}f)(x) = \lambda^{-n/2} f(x/\lambda)$. Then

$$U_{\lambda}^{-1}(-\Delta+V)U_{\lambda} = -\frac{1}{\lambda^2}\Delta + V(\lambda\cdot) = -\frac{1}{\lambda^2}\Delta + \frac{\gamma}{\lambda|x|} = \frac{1}{\lambda^2}\left(-\Delta + \frac{\lambda\gamma}{|x|}\right).$$

So we don't need to worry so much about the relative bound in the Kato-Rellich theorem.

We shall show that

$$\|Vu\|^{2} = \int \frac{|u(x)|^{2}}{|x|^{2}} dx \le C(\|P_{0}u\| + \|u\|)^{2} \qquad \forall u \in D(P_{0}).$$

Let $\chi \in C_0^\infty(\mathbb{R}^3)$ be

$$\chi = \begin{cases} 1 & |x| < 1\\ 0 & |x| > 2. \end{cases}$$

Then, letting $E(x) = -1/(4\pi |x|)$ be the Newtonian potential in \mathbb{R}^3 (so $\Delta E = \delta_0$),

$$\chi u = \delta_0 * \chi u = \Delta E * \chi u = \underbrace{E}_{\in L^2_{\text{loc}}} * \underbrace{\Delta(\chi u)}_{\in L^2_{\text{compact}}}.$$

So $\chi u \in L^{\infty}$ is continuous, and

$$|\chi u(x)| = \left| \int E(y) \Delta(\chi u)(x-y) \, dy \right| \le \left(\int_K |E(y)|^2 \, dy \right)^{1/2} \|\Delta(\chi u)\|_{L^2}$$

Thus, $|\chi u(x)|^2 \leq C ||\Delta(\chi u)||_{L^2}^2$, so dividing by $|x|^2$ and integrating on both sides, we get

$$\int \frac{|\chi u(x)|^2}{|x|^2} \le C \|\Delta(\chi u)\|_{L^2}$$

$$\le C(\|\Delta u\|^2 + \|u\|^2 + \|\nabla u\|^2)$$

$$\le C'(\|\Delta u\|^2 + \|u\|^2).$$

15.2 Quadratic forms

Let H be a complex, separable Hilbert space, let $D \subseteq H$ be a linear subspace, and let $q: D \times D \to \mathbb{C}$ be a sesquilinear form. Let q(u) := q(u, u) be the corresponding quadratic form with domain D(q) = D.

Remark 15.1. The polarization identity

$$q(u,v) = \frac{1}{4} \sum_{k=0}^{3} i^{k} q(u+i^{k}v)$$

allows us to determine q(u, v) from q(u).

Definition 15.1. We say that q is symmetric if $q(u, v) = \overline{q(v, u)}$ for all $(u, v) \in D$ (so $q(u) \in R$ for all u). A symmetric form q is **bounded below** if $q(u) \ge -C||u||^2$ for all $u \in D(q)$.

Example 15.2. Let $H = L^2(\mathbb{R}/2\pi\mathbb{Z})$, and let $V \in L^1(\mathbb{T};\mathbb{R})$. Consider $q(u) = \int_{\mathbb{R}/2\pi\mathbb{Z}} (|u'|^2 + V|u|^2) dx$ with domain $D(q) = H^1(\mathbb{T}) \subseteq L^\infty(\mathbb{T})$. Formally, we can write

$$q(u) = \langle Pu, u \rangle_{L^2}, \qquad P = -\partial_x^2 + V.$$

We'll apply quadratic form techniques to discuss self-adjoint extensions.

16 Closure of Quadratic Forms

16.1 Quadratic forms bounded below

Last time, we introduced the notion of quadratic forms: Let $q: D \to \mathbb{R}$ be a symmetric quadratic form. We say that q is **bounded below** if there is a c such that $q(u) \ge -c||u||^2$ for $u \in D$.

Example 16.1. Let $H = L^2(\mathbb{T}), \mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$, and $V \in L^1(\mathbb{T}; \mathbb{R})$. Let

$$q(u) = \int (|u'|^2 + V|u|^2) dx, \qquad D = D(q) = H^1(\mathbb{T}) \subseteq L^{\infty}(\mathbb{T})$$

Formally, $q(u) = \langle Pu, u \rangle_{L^2}$ with $P = -\partial_x^2 + V(x)$.

We claim that q is bounded below: For every $\varepsilon > 0$, there is some $V^{\sharp} \in L^{\infty}(\mathbb{T})$ such that $\|V - V^{\sharp}\|_{L^{1}} \leq \varepsilon$. Then, keeping in mind that $\|u\|_{H_{1}}^{2} = \|u'\|_{L^{2}}^{2} + \|u\|_{L^{2}}^{2}$,

$$q(u) = \int |u'|^2 + \underbrace{\int V^{\sharp} |u|^2}_{\geq -C_{\varepsilon} \|u\|_{L^2}^2} + \underbrace{\int (V - V^{\sharp}) |u|^2}_{\geq -O(\varepsilon) \|u\|_{H^1}^2}$$

$$\geq (1 - O(\varepsilon)) \|u\|_{H^1}^2 - C_{\varepsilon} \|u\|_{L^2}^2$$

for all $\varepsilon > 0$. We get that there exist c > 0, C > 0 such that

$$q(u) \ge c \|u\|_{H^1}^2 - C \|u\|_{L^2}^2, \qquad \forall u \in D(q).$$

Remark 16.1. We can always add a constant multiple of ||u|| to q, so from now on, we will assume that q is nonnegative. This allows us to use the Cauchy-Schwarz inequality:

$$|q(u,v)| \le q(u)^{1/2} q(v)^{1/2} \qquad \forall u, v \in D(q).$$

16.2 Closed quadratic forms

Definition 16.1. Let $u_n \in D(q)$ and $u \in H$. We say that u_n is *q*-convergent to u (written $u_n \xrightarrow{q} u$) if $u_n \to u$ in H and $q(u_n - u_m) \xrightarrow{n,m\to\infty} 0$. We say that q is closed if whenever $u_n \xrightarrow{q} u$, $u \in D(q)$ and $q(u_n - u) \to 0$.

Remark 16.2. Let $H_q = D(q)$, equipped with the scalar product $\langle u, v \rangle_q := q(u, v) + \langle u, v \rangle$. Then q is closed if and only if H_q is a Hilbert space.

Let's return to our example.

Example 16.2. Let $q(u) = \int (||u'|^2 + V|u|^2)$ on $D(q) = H^1(\mathbb{T})$ with $V \in L^1(\mathbb{T})$. Then $q(u) \ge c||u||^2_{H^1} - C||u||^2_{H^1}$, so the quadratic form $u \mapsto q(u) + C||u||^2_{H^1}$ is closed. Indeed,

$$||u||_q^2 := q(u) + (c+1)||u||_{H^1}^2$$

and this inequality tells us that $||u||_q \sim ||u||_{H^1}$ for $u \in D(q)$.

16.3 Closable quadratic forms

Definition 16.2. We say that q is **closable** if it has a closed extension $\tilde{q} : D(\tilde{q}) \to \mathbb{R}$: $D(q) \subseteq D(\tilde{q})$ and $\tilde{q}|_{D(q)} = q$.

Proposition 16.1. A quadratic form q is closable if and only if whenever $u_n \xrightarrow{q} 0$, then $q(u_n) \to 0$. If this condition holds, then q has a smallest closed extension \overline{q} (the **closure** of q) given by $D(\overline{q}) = \{u \in H : \exists u_n \in D(q) \text{ s.t. } u_n \xrightarrow{q} u\}$ and $\overline{q}(u) = \lim_{n \to \infty} q(u_n)$.

Proof. (\Longrightarrow): Let \tilde{q} be a closed extension. If $u_n \xrightarrow{q} 0$, then $u_n \xrightarrow{\tilde{q}} 0$, so $\tilde{q}(u_n) = q(u_n) \to 0$.

 (\Leftarrow) : Assume that the condition holds, and let $u_n \xrightarrow{q} u$. We claim that $\lim_{n\to\infty} q(u_n)$ exists.

$$|q(u_n) - q(u_m)| = |q(u_n, u_n) - q(u_m, u_m)|$$

= |q(u_n - u_m, u_m) + q(u_m, q_n - u_m)
$$\stackrel{\text{C-S}}{\leq} q^{1/2}(u_n - u_m)q^{1/2}(u_n) + q^{1/2}(u_n - u_m)q^{1/2}(u_m).$$

So we get

$$|q^{1/2}(u_n) - q^{1/2}(u_m)| \le q^{1/2}(u_n - u_m) \xrightarrow{n, m \to \infty} 0.$$

The claim follows, and if $v_n \xrightarrow{q} u$, then $u_n - v_n \xrightarrow{q} 0$:

$$q^{1/2}(u_n - v_n - u_m + v_m) \le q^{1/2}(u_n - u_m) + q^{1/2}(v_n - v_m) \to 0.$$

By the assumed condition, $q(u_n - v_n) \rightarrow 0$. And by the same argument as before,

$$|q^{1/2}(u_n) - q^{1/2}(v_n)| \le q^{1/2}(u_n - v_n) \to 0.$$

We get a well-defined quadratic form \overline{q} which extends q.

We claim that \overline{q} is closed; that is, we check that $H_{\overline{q}} = D(\overline{q})$ is complete with respect to $\langle u, v \rangle_{\overline{q}} = \overline{q}(u, v) + \langle u, v \rangle$. H_q is dense in $H_{\overline{q}}$, as if $u_n \in H_q$ with $u_n \xrightarrow{q} u \in H_{\overline{q}}$, then $\overline{q}(u_n - u) \to 0$:

$$\overline{q}(u_n - u) = \lim_{m \to \infty} q(u_n - u_m) \xrightarrow{n \to \infty} 0.$$

Every Cauchy sequence in H_q has a limit in $H_{\overline{q}}$, so we have a dense subset where every Cauchy sequence has a limit. So $H_{\overline{q}}$ is complete.

Finally, one checks that if \tilde{q} is a closed extension of q, then $\bar{q} \subseteq \tilde{q}$.

Theorem 16.1. Let q be a nonnegative, symmetric, quadratic form. Assume that D(q) is dense and that q is closed. Then there exists a unique self-adjoint operator \mathscr{A} such that $D(\mathscr{A}) \subseteq D(q)$ and $q(u, v) = \langle \mathscr{A}u, v \rangle$ for all $u \in D(\mathscr{A}), v \in D(q)$. Also, $D(\mathscr{A})$ is a core for q in the sense that $D(\mathscr{A})$ is dense in H_q .

17 Quadratic Forms and the Friedrichs Extension Theorem

17.1 Obtaining self-adjoint operators from quadratic forms

Last time, we said that a nonnegative, symmetric quadratic form is closed if when $u_n \xrightarrow{q} u$ for $u_n \in D(q)$, then $u \in D(q)$ and $q(u_n - u) \to 0$. We checked that q is closable if and only if when $u_n \xrightarrow{q} 0$, $q(u_n) \to 0$.

Theorem 17.1. Let q be a nonnegative, symmetric, quadratic form. Assume that D(q) is dense and that q is closed. Then there exists a unique self-adjoint operator \mathscr{A} such that $D(\mathscr{A}) \subseteq D(q)$ and $q(u, v) = \langle \mathscr{A}u, v \rangle$ for all $u \in D(\mathscr{A}), v \in D(q)$. Also, $D(\mathscr{A})$ is a core for q in the sense that $D(\mathscr{A})$ is dense in H_q .

Example 17.1. Let $q(u) = \int |u'|^2 + V|u|^2 dx$, where $V \in L^1(\mathbb{T};\mathbb{R})$ and $D(q) = H^1(\mathbb{T})$. Then there exists a unique self-adjoint operator $P = -\partial_x^2 + V$ such that $D(P) \subseteq H^1$ and $q(u, v) = \langle Pu, v \rangle$.

Proof. Let $\langle x, y \rangle_q := q(x, y) + \langle x, y \rangle$ for $x, y \in D(q)$. Then H_q is a Hilbert space with respect to this scalar product. Then $||x||_q \geq ||x||$ for all $x \in H_q$, so for any $u \in H$, the linear form $H_q \to \mathbb{C}$ sending $v \mapsto \langle v, u \rangle$ is continuous. By the Riesz representation theorem, there is a unique $u^* \in H_q$ such that $\langle v, u \rangle = \langle v, u^* \rangle_{H_q}$. We get a linear map $K : H \to H_q$ sending $u \mapsto u^*$ such that $\langle v, u \rangle = \langle v, Ju \rangle_q$ for all $v \in H_q$ and $u \in H$.

We claim that J is a bounded, self-adjoint operator on H. If $y, x \in H$,

$$\langle Jy, x \rangle = \langle Jy, Jx \rangle_q = \overline{\langle Jx, Jy \rangle_q} = \overline{\langle Jx, y \rangle} = \langle y, Jx \rangle.$$

So J is symmetric. By the closed graph theorem, $J \in \mathcal{L}(H, H)$. Moreover, J is injective: If Jx = 0, then $\langle y, x \rangle = \langle y, Jx \rangle_q = 0$ for all $y \in H_q$. But H_q is dense in H, so x = 0. Write

$$H = \ker J \oplus \overline{\operatorname{Ran} J^*} = \overline{\operatorname{Ran} J}.$$

So Ran J is dense and contained in H_q . Define $\mathscr{A} : D(\mathscr{A}) = \operatorname{Ran} J$ by $\mathscr{A} x = J^{-1}x - x$. We have J^{-1} is self-adjoint: J^{-1} is symmetric, and if (x, y) are such that $\langle J^{-1}z, x \rangle = \langle z, y \rangle$, where z = Jw, then $\langle w, x \rangle = \langle Jw, y \rangle = \langle w, Jy \rangle$. So $x \in D(\mathscr{A})$, and $y = J^{-1}x$. $(D(\mathscr{A})$ is dense in H_q .)

Finally, \mathscr{A} corresponds to the quadratic form q:

$$\langle x, y \rangle_q = \langle x, J^{-1}y \rangle,$$

 \mathbf{SO}

$$q(x,y) = \langle x,y \rangle_q - \langle x,y \rangle = \langle x,\mathscr{A}y \rangle, \qquad y \in D(\mathscr{A}), x \in D(q).$$

17.2 The Friedrichs extension theorem

In the previous theorem, we don't have much control over the domain of the self-adjoint operator \mathscr{A} . Here is a frequently encountered use of the theorem.

Theorem 17.2 (Friedrichs extension). Let S be a symmetric, densely defined operator $D(S) \rightarrow H$ such that S is bounded below: $\langle Su, u \rangle \geq -C ||u||^2$ for every $u \in D(S)$. Let the quadratic form q be given by D(q) = D(S), $q(u) = \langle Su, u \rangle$. Then q is closable. The self-adjoint operator associated to \overline{q} , the **Friedrichs extension** of S, is also bounded below.

Remark 17.1. The Friedrichs extension theorem can give a different result compared to if we just closed the operator S.

Remark 17.2. Let $q \ge 0$ be closed. Then $q(u, v) = \langle u, \mathscr{A}v \rangle$ for $v \in D(\mathscr{A})$ and $u \in D(q)$, where $D(\mathscr{A}) = \{v \in H_q : \exists f \in H \text{ s.t. } q(u, v) = \langle u, f \rangle \ \forall u \in D(q) \}$. So in the theorem, $D(\mathscr{A}) \supseteq D(S)$.

Proof. We can assume that $S \ge 0$. We only need to show that q is closable. Let $u_n \in D(S)$ be such that $u_n \to 0$ in H and $q(u_n - u_m) \xrightarrow{n,m \to \infty} 0$. We want to show that $q(u_n) \to 0$. We have

$$\begin{aligned} q(u_n) &\leq |q(u_n - u_m, u_n)| + |q(u_m, u_n)| \\ &\stackrel{\text{C-S}}{\leq} q^{1/2}(u_n - u_m)q^{1/2}(u_n) + |\langle u_m, Su_n\rangle| \end{aligned}$$

For all $\varepsilon > 0$, there exists an N such that $q(u_n - u_m) \leq \varepsilon$ when $n, m \geq N$. So

$$q(u_n) \le \varepsilon^{1/2} q^{1/2}(u_n) + |\langle u_m, Su_n \rangle| \qquad \forall n, m \ge N.$$

Letting $m \to \infty$, we get

$$q(u_n) \leq \varepsilon \qquad \forall n \geq N.$$

So q is closable.

Example 17.2 (The Dirichlet realization of $-\Delta$). Let $\Omega \subseteq \mathbb{R}^n$ be open and bounded, and let $S = -\Delta$ with $D(S) = C_0^{\infty}(\Omega)$ ($S \ge 0$). The Friedrichs extension is associated with the closure of the quadratic form

$$q(u) = \langle Su, u \rangle = \int_{\Omega} (-\Delta u) \overline{u} = \int_{\Omega} |\nabla u|^2 dx.$$

Next time, we will see that in this case, $D(\overline{q})$ is the closure of C_0^{∞} in the topology of $H^1(\Omega)$. This is usually called $H_0^1(\Omega)$ (but is not all of $H^1(\Omega)$).

18 Introduction to Spectral Theory of Unbounded Operators

18.1 The Dirichlet realization of a 2nd order elliptic operator

Let $q: D(q) \to \mathbb{R}$ be a nonnegative, symmetric, densely defined, closed quadratic form. last time, we saw that there is a unique self-adjoint operator \mathscr{A} with $D(\mathscr{A}) \subseteq D(q)$, $q(u, v) = \langle u, \mathscr{A}v \rangle$ for $u \in D(q)$ and $v \in D(\mathscr{A})$. We have

$$D(\mathscr{A}) = \{ v \in D(q) : \exists f \in H \text{ s.t. } q(u, v) = \langle u, f \rangle \ \forall u \in D(q) \}.$$

Example 18.1 (Dirichlet realization of a 2nd order elliptic operator). Let $\Omega \subseteq \mathbb{R}^n$ be open and bounded, and let $\Omega \ni x \mapsto (a_{j,k}(x)) \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ with $a_{j,k} = a_{k,j}$ with $a_{j,k} \in L^{\infty}(\Omega)$. Assume the **ellipticity condition**:

$$\exists c > 0 \text{ such that} \qquad \sum_{j,k=1}^{n} a_{j,k}(x)\xi_j\xi_k \ge c|\xi|^2 \qquad \forall x \in \Omega, \xi \in \mathbb{R}^n.$$

Let

$$q(u) = \int_{\Omega} \sum_{j,k=1}^{n} a_{j,k}(x) \frac{\partial u}{\partial x_j} \overline{\frac{\partial u}{\partial x_k}} \, dx,$$

where $D(q) = H_0^1(\Omega)$, the closure of $C_0^{\infty}(\Omega)$ in the Sobolev space $H^1(\Omega) = \{u \in L^2(\Omega) : \partial_{x_j} u \in L^2\}$. Then q is closed: $q(u) + ||u||_{L^2}^2$ is equivalent to $||\nabla u||_{L^2}^2 + ||u||_{L^2}^2$ on $H_0^1(\Omega)$. Associated to q is a self-adjoint operator \mathscr{A} with

$$D(\mathscr{A}) = \{ u \in H_0^1 : \exists f \in L^2 \text{s.t. } q(u, v) = \langle f, v \rangle \ \forall v \in H_0^1(\Omega) \}$$
$$= \{ u \in H_0^1 : \exists f \in L^2 \text{s.t. } q(u, v) = \langle f, v \rangle \ \forall v \in H_0^1(\Omega) \}$$

Rewrite this condition: $\int \sum a_{j,k} \frac{\partial u}{\partial x_j} \frac{\partial v}{\partial x_k} = \int f \overline{v} \,\forall v \iff \sum_{j,k=1}^n \partial_{x_j} (a_{j,k}(x) \frac{\partial u}{\partial x_k}) \in L^2(\Omega).$

$$= \left\{ u \in H_0^1 : \sum \partial_{x_j} \left(a_{j,k} \frac{\partial u}{\partial x_k} \right) \in L^2 \right\}.$$

 \mathscr{A} is given by

$$\mathscr{A}u = -\sum \partial_{x_j} \left(a_{j,k} \frac{\partial u}{\partial x_k} \right), \qquad u \in D(\mathscr{A}).$$

The operator \mathscr{A} is the **Dirichlet realization** of $-\sum_{j,k=1}^{n} \partial_{x_j}(a_{j,k} \frac{\partial u}{\partial x_k})$. We have

$$\langle \mathscr{A}u, u \rangle = q(u) = \int \sum a_{j,k} \frac{\partial u}{\partial x_j} \overline{\frac{\partial u}{\partial x_k}} \ge c \|\nabla u\|_{L^2}^2 \ge c' \|u\|_{L^2}^2,$$

where the last inequality is **Poincaré's inequality**. So we get $\mathscr{A} : D(\mathscr{A}) \to L^2(\Omega)$ is bijective: \mathscr{A} is injective, im A is closed (by Cauchy-Schwarz), and $(\operatorname{im} \mathscr{A})^{\perp} = \ker \mathscr{A} = \{0\}$.

Remark 18.1. When $(a_{j,k}) = 1$, the corresponding operator is $\mathscr{A} = -\Delta_D$ with $(-\Delta_D) = \{u \in H_0^1 : \Delta u \in L^2\}$. One can show that if $\partial \Omega \in C^2$, then $D(-\Delta_D) = (H_0^1 \cap H^2)(\Omega)$.

Let's look at spectral properties of \mathscr{A} .

 \mathscr{A}^{-1} is bounded: $L^2(\Omega) \to L^2(\Omega)$, and it is also bounded $L^2(\Omega) \to D(\mathscr{A})$ (equipped with the graph norm). There is a natural embedding $D(\mathscr{A}) \to H^1_0(\Omega) \to L^2(\Omega)$, where the embedding $H^1_0(\Omega) \to L^2(\Omega)$ is compact (Rellich compactness theorem). Thus, \mathscr{A}^{-1} is compact, and self-adjoint on $L^2(\Omega)$. If $\lambda_1 \ge \lambda_2 \ge \cdots \to 0$ are the nonvanishing eigenvalues of \mathscr{A}^{-1} (each eigenvalue repeated according to its multiplicity), then let $e_n \in L^2(\Omega)$ be the corresponding eigenfunctions: $(\mathscr{A}^{-1} - \lambda_n)e_n = 0$. The e_n form an orthonormal basis of $L^2(\Omega)$; moreover, $e_n \in D(\mathscr{A})$, and $(\mathscr{A} - 1/\lambda_n)e_n = 0$.

Now for $z \in \mathbb{C}$, $\mathscr{A} - z : D(\mathscr{A}) \to L^2(\Omega)$ is invertible if and only if $z \neq 1/\lambda_n$ for all n:

$$\mathscr{A} - z = \underbrace{(1 - z \mathscr{A}^{-1})}_{\text{invertible iff injective}} \mathscr{A},$$

and the first term is injective iff $z \neq 1/\lambda_n$ for all n. We can conclude that the **spectrum** of \mathscr{A} is given by the eigenvalues $\mu_1 \leq \mu_2 \leq \cdots \rightarrow \infty$ with $(\mathscr{A} - \mu_n)e_n = 0$ and e_n s forming an orthonormal basis for $L^2(\Omega)$.

18.2 Spectrum and resolvent

Definition 18.1. Let $T : D(T) \to H$ be closed and densely defined. We say that for $\lambda \in \mathbb{C}, \lambda \notin \operatorname{Spec}(T)$ if and only if $T - \lambda : D(T) \to H$ is bijective. The complement of $\operatorname{Spec}(T)$ is the **resolvent set** of T. When $\lambda \notin \operatorname{Spec}(T)$, we let $R(\lambda) = (T - \lambda)^{-1}$ be the **resolvent** of T.

Since T is closed, $R(\lambda)$ is closed. By the closed graph theorem, $R(\lambda) \in \mathcal{L}(H, H)$.

Proposition 18.1. The resolvent set $\rho(T) \subseteq \mathbb{C}$ is open, and $\rho(T) \ni \lambda \mapsto R(\lambda) \in \mathcal{L}(H, H)$ is holomorphic.

Next time we will prove this. We are working towards a development of the spectral theorem for unbounded operators.

19 Development Toward the Spectral Theorem for Unbounded Self-Adjoint Operators

19.1 The resolvent

Let $T: D(T) \to H$ be closed and densely defined. We said $\lambda \notin \operatorname{Spec}(T) \iff T - \lambda : D(T) \to H$ is bijective and defined the **resolvent** as $R(\lambda) = (T - \lambda)^{-1} \in \mathcal{L}(H, H)$ for $\lambda \in \rho(T) = \mathbb{C} \setminus \operatorname{Spec}(T)$, the **resolvent set**.

Proposition 19.1. The resolvent set $\rho(T) \subseteq \mathbb{C}$ is open, and $\rho(T) \ni \lambda \mapsto R(\lambda) \in \mathcal{L}(H, H)$ is holomorphic.

Proof. If $\lambda_0 \in \rho(T)$ write

$$T - \lambda = (T - \lambda) - (\lambda - \lambda_0) = (1 - (\lambda - \lambda_0)R(\lambda_0))(T - \lambda_0).$$

It follows that $T - \lambda$ is invertible for $|\lambda - \lambda_0| < \frac{1}{\|R(\lambda_0)\|}$. We also have

$$R(\lambda) = R(\lambda_0) = R(\lambda_0)(1 - (\lambda - \lambda_0)R(\lambda_0))^{-1}$$
$$= \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n R(\lambda_0)^{n+1}.$$

This converges in $\mathcal{L}(H, H)$, so $R(\lambda)$ is holomorphic.

Proposition 19.2. If T is self-adjoint, then $\text{Spec}(T) \subseteq \mathbb{R}$.

Proof. If $\lambda \in \mathbb{C} \setminus \mathbb{R}$,

$$|(T - \lambda)u||^{2} = ||(T - \operatorname{Re} \lambda)u||^{2} + (\operatorname{Im} \lambda)^{2}||u||^{2}.$$

We also have

$$||R(\lambda)||_{\mathcal{L}(H,H)} \le \frac{1}{|\operatorname{Im} \lambda|}.$$

19.2 Nevanlinna-Herglotz functions for self-adjoint operators

Example 19.1. Let $:D(\mathscr{A}) \to H$ be self-adjoint, $\langle \mathscr{A}u, u \rangle \geq c ||u||^2$ for $u \in D(\mathscr{A})$, and $\mathscr{A}^{-1}: H \to H$ be compact. Then Spec(A) is of the form $\lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$. Let e_j be an orthonormal basis of H such that $(\mathscr{A} - \lambda_j)e_j = 0$. Then for $u = \sum_j x_j e_j \in H$,

$$\langle R(z)u,u\rangle = \sum \frac{|c_j|}{\lambda_j - z} = \int \frac{\xi - z}{\lambda_j} d\mu(\xi), \qquad d\mu = \sum |c_j|^2 \delta(\xi - \lambda)$$

This is a positive, pure point measure of total mass $\int d\mu = ||u||^2$ (by Parseval).

Let $A: D(A) \to H$ be self-adjoint, and consider the holomorphic function

$$f(z) = \langle R(z)u, u \rangle, \quad \text{Im } z > 0.$$

Then $|f(z)| \leq \frac{C}{|\operatorname{Im} z|}$, where $C = ||u||^2$. We have

$$2i \operatorname{Im} f(z) = \langle R(z)u, u \rangle - \langle R(z)^*u, u \rangle$$

Using $R(z)^* = R(\overline{z}),$

$$=\langle (R(z) - R(\overline{z}))u, u \rangle$$

We can also check via algebraic manipulation that $R(\lambda) - \mathbb{R}(\mu) = (\lambda - \mu)R(\lambda)R(\mu)$. Using this,

$$= 2i \operatorname{Im} z \left\langle R(z)^* R(z) u, u \right\rangle.$$

So we get

$$\operatorname{Im} f = \operatorname{Im} z \| R(z)u \|^2.$$

In particular, $\operatorname{Im} f \geq 0$ for $\operatorname{Im} z > 0$.

Now we can use the following general result from complex analysis.⁶

Theorem 19.1 (Nevanlinna, Herglotz,...). Let f be a holomorphic function in Im z > 0 with $\text{Im } f \ge 0$ and $|f(z)| \le \frac{c}{\text{Im } z}$. Then there is a uniform bound

$$\int \operatorname{Im} f(x+iy) \, dx \le C\pi \qquad \forall y > 0,$$

and there exists a positive bounded measure μ on \mathbb{R} such that

$$\frac{1}{\pi} \int \varphi(x) \operatorname{Im} f(x+iy) \, dx \xrightarrow{y \to 0^+} \int \varphi \, d\mu \qquad \forall \varphi \in C_B := (C \cap L^\infty)(\mathbb{R}).$$

We have

$$f(z) = \int \frac{1}{\xi - z} d\mu(\xi), \qquad \text{Im } z > 0,$$
$$\int d\mu(\xi) = \lim_{y \to +\infty} y \operatorname{Im} f(iy) = \lim_{z \to \infty} (-zf(z)),$$

where $z \to \infty$ with $\arg(z)$ bounded away from $0, \pi$.

Conversely, if $\mu \ge 0$ is a bounded measure on \mathbb{R} and f is defined by $f(z) = \int \frac{1}{\xi - z} d\mu(\xi)$, then both the weak convergence and the limit condition hold.

⁶This is a standard result. It was even a qualifying exam problem in the past.

Proof. Take the semicircle contour γ (slightly above the real axis) made of Im z = c > 0 and an arc of radius R. Cauchy's integral formula gives

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z}$$
$$= \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \left(\frac{1}{\zeta - z} - \frac{1}{\zeta - z^*}\right) d\zeta,$$

where z^* is the reglection of z over the line Im z = c. That is, $z^* = \overline{z} + 2ic$.

$$= \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \frac{z - z^*}{(\zeta - z)(\zeta - z^*)} \, d\zeta$$

Letting $R \to \infty$, we get

$$f(z) = \frac{1}{2\pi i} \int_{L_c} \frac{f(\zeta)(z - z^*)}{(\zeta - z)(\zeta^* - z^*)} \, d\zeta,$$

where L_c is the whole line Im z = c and $(\zeta - z)(\zeta^* - z^*) = |\zeta - z|^2$. Take the imaginary part of this to get

$$\operatorname{Im} f = \frac{\operatorname{Im} z - c}{\pi} \int_{L_c} \frac{\operatorname{Im} f(\zeta)}{|\zeta - z|^2} \, d\zeta$$

Multiply by Im z and let Im $z \to \infty$ while keeping Re z fixed: the left hand side is $\leq c$. By Fatou's lemma,

$$\frac{1}{\pi} \int_{\mathbb{R}} \operatorname{Im} f(x+ic) \, dx \le c.$$

By Banach-Alaoglu, there is a sequence of $c_n \to 0^+$ and a positive, bounded measure μ on $\mathbb R$ such that

$$\frac{1}{\pi} \operatorname{Im} f(x + ic_n) \, dx \xrightarrow{\operatorname{weak}^*} \mu.$$

We get that

Im
$$f(z) = \text{Im } z \int \frac{1}{|\xi - z|^2} d\mu(\xi)$$
, Im $z > 0$.

This implies that

$$\operatorname{Im}\left(f(z) - \int \frac{1}{\xi - z} d\mu(\xi)\right) = 0,$$
$$f(z) = \int \frac{1}{\xi - z} d\mu(\xi),$$

so

proving the first claim.

We will finish the proof of the theorem next time.

20 Development of Spectral Measures

20.1 Nevanlinna-Herglotz functions

Last time, we were proving the following theorem from complex analysis.

Theorem 20.1 (Nevanlinna, Herglotz,...). Let f be a holomorphic function in Im z > 0 with $\text{Im } f \ge 0$ and $|f(z)| \le \frac{c}{\text{Im } z}$. Then there is a uniform bound

$$\int \operatorname{Im} f(x+iy) \, dx \le C\pi \qquad \forall y > 0,$$

and there exists a positive bounded measure μ on \mathbb{R} such that

$$\frac{1}{\pi} \int \varphi(x) \operatorname{Im} f(x+iy) \, dx \xrightarrow{y \to 0^+} \int \varphi \, d\mu \qquad \forall \varphi \in C_B := (C \cap L^\infty)(\mathbb{R}).$$

We have

$$f(z) = \int \frac{1}{\xi - z} d\mu(\xi), \qquad \text{Im } z > 0,$$

$$\int d\mu(\xi) = \lim_{y \to +\infty} y \operatorname{Im} f(iy) = \lim_{z \to \infty} (-zf(z)),$$

where $z \to \infty$ with $\arg(z)$ bounded away from $0, \pi$.

Conversely, if $\mu \ge 0$ is a bounded measure on \mathbb{R} and f is defined by $f(z) = \int \frac{1}{\xi - z} d\mu(\xi)$, then both the weak convergence and the limit condition hold.

Last time, we showed that $f(z) = \int \frac{1}{\xi - z} d\mu(\xi)$, which implies that

$$\int d\mu(\xi) = \lim_{y \to \infty} y \operatorname{Im} f(iy) = \lim_{z \to \infty} (-zf(z)).$$

Proof. We claim that $\frac{1}{\pi} \operatorname{Im} f(x+iy) dx \to d\mu$ weak^{*} as $y \to 0^+$. If $\varphi \in C_B(\mathbb{R})$,

$$\frac{1}{\pi} \operatorname{Im} f(x+iy)\varphi(x) \, dx = \frac{1}{\pi} \iint \varphi(x) \frac{y}{|\xi - x - iy|^2} d\mu(\xi) \, dx$$
$$= \int \left(\frac{y}{\pi} \int \frac{\varphi(x)}{|\xi - x - iy|^2} \, dx\right) \, d\mu(\xi)$$

The part inside the parentheses is $\frac{1}{\pi} \int \frac{\varphi(\xi+ty)}{1+t^2} dt \to \varphi(\xi)$ by cominated convergence as $y \to 0^+$. The convergence is dominated by $\|\varphi\|_{L^{\infty}} \in L^1(d\mu)$, so by another application of dominated convergence, we get

$$\xrightarrow{y \to 0^+} \int \varphi(\xi) \, d\mu(\xi).$$

20.2 Construction of spectral measures via Nevanlinna-Herglotz functions

Apply the theorem to $f(z) = \langle R(z)u, u \rangle$, where $u \in H$ and $R(z) = (A-z)^{-1}$ is the resolvent of a self-adjoint operator A. We can write

$$\langle R(z)u,u\rangle = \int \frac{1}{\xi - z} d\mu_u(\xi),$$

where the total measure is

$$\int d\mu_u = \lim_{y \to +\infty} y \underbrace{\operatorname{Im} \left\langle R(iy)u, u \right\rangle}_{y \| R(iy)u \|^2} \le \|u\|^2.$$

We have, for $\varphi \in C_B$,

$$\int \varphi(x) \, d\mu_u(x) = \lim_{y \to 0^+} \frac{1}{\pi} \int \operatorname{Im} \left\langle R(x+iy)u, u \right\rangle \varphi(x) \, dx$$
$$= \lim_{y \to 0^+} \frac{1}{2\pi i} \varphi(x) \left[\left\langle R(x+iy)u, u \right\rangle - \left\langle R(x-iy)u, u \right\rangle \right] dx$$

So the measure is given by the jump of the resolvent over the real line.

Remark 20.1. We have that $\operatorname{supp}(\mu_n) \subseteq \operatorname{Spec}(A)$ for all u.

Define the complex measures $\mu_{u,v}$ for $u, v \in H$ by polarization:

$$d\mu_{u,v} = \frac{1}{4} (d\mu_{u+v} + id\mu_{u+iv} - d\mu_{u-v} - id\mu_{u-iv}).$$

Then we have

$$\langle R(z)u,v\rangle = \int \frac{1}{\xi - z} d\mu_{u,v}(\xi),$$
$$\int \varphi \, d\mu_{u,v} = \lim_{y \to 0^+} \frac{1}{2\pi i} \int \varphi(x) \left\langle (R(x + iy) - R(x - iy))u,v \right\rangle \, dx.$$

The total mass of $\mu_{u,v}$ is

$$\int d\mu_{u,v} \le \frac{1}{4} (\|u+v\|^2 + \|u+iv\|^2 + \|u-v\|^2 + \|u-iv\|$$

By homogeneity, we may assume ||u|| = ||v|| = 1.

$$= \frac{1}{4}(2(||u||^2 + ||v||^2)2) = 2.$$

So by homogeneity, $\|\mu_{u,v}\| \leq 2\|u\| \cdot \|v\|$.

For fixed $\varphi \in C_B$, we have

$$\left|\int \varphi \, d\mu_{u,v}\right| \le 2\|\varphi\|_{L^{\infty}} \|u\| \|v\|,$$

so the map $(u, v) \mapsto \int \varphi \, d\mu_{u,v}$ is a bounded, sesquilinear form on $H \times H$. By the Riesz representation theorem, there is a unique operator $\varphi(A) \in \mathcal{L}(H, H)$ such that $\langle \varphi(A)u, v \rangle = \int \varphi \, d\mu_{u,v}$. We also get that $\|\varphi(A)\| \leq 2\|\varphi\|_{L^{\infty}}$. In other words,

$$\varphi(A) = \lim_{\varepsilon \to 0^+} \frac{1}{2\pi i} \int \varphi(\lambda) (R(\lambda + i\varepsilon) - R(\lambda - i\varepsilon)) \, d\lambda$$

(where the limit exists in the weak operator topology).

Remark 20.2. Let $A : \mathbb{C}^n \to \mathbb{C}^n$ be a Hermitian matrix. Then the above relation holds: it suffices to check this formula when n = 1, where A is multiplication by t for $t \in \mathbb{R}$. In this case, this is

$$\varphi(t) = \lim_{\varepsilon \to 0^+} \frac{1}{2\pi i} \int \varphi(\lambda) \left(\frac{1}{t - \lambda - i\varepsilon} - \frac{1}{t - \lambda + i\varepsilon} \right) \, d\lambda.$$

This is equivalent to

$$\delta(t) = \lim_{\varepsilon \to 0} \frac{1}{2\pi i} \left(\frac{1}{t - i\varepsilon} - \frac{1}{t + i\varepsilon} \right),$$

which is called **Plemelj's formula**. The proof is (if we take t = 0):

$$\varphi(0) = \lim_{\varepsilon \to 0^+} \frac{1}{2\pi i} \int \varphi(t) \frac{2i\varepsilon}{t^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{1}{\pi} \int \frac{\varepsilon \varphi(t)}{\varepsilon^2 + t^2}.$$

One sometimes writes

$$\delta(A - \lambda) = \frac{1}{2\pi i} (R(\lambda + i0) - R(\lambda - i0)),$$
$$\varphi(A) = \int \varphi(\lambda) \delta(A - \lambda) \, d\lambda.$$

Definition 20.1. The measures $\mu_{u,v}$ are called the spectral measures of A.

We have defined a map of algebras $C_B \to \mathcal{L}(H, H)$ sending $\varphi \mapsto \varphi(A)$. This map has nice algebraic properties that we will study. This will lead us to the development of the spectral theorem.

21 Properties of Spectral Measures

21.1 Total mass of spectral measures

Let $\varphi \in (C \cap L^{\infty})(\mathbb{R})$ and let $A: D(A) \to H$ be self-adjoint. Last time, we had

$$\langle \varphi(A)u,v\rangle = \lim_{\varepsilon \to 0^+} \frac{1}{2\pi i} \int \varphi(\lambda) \left\langle (R(\lambda + i\varepsilon) - R(\lambda - i\varepsilon))u,v \right\rangle \, d\lambda.$$

This is similar to the finite dimensional case, where

$$\varphi(A) = \sum_{\lambda \in \operatorname{Spec}(A)} \varphi(\lambda) \Pi_{\lambda},$$

where Π_{λ} is the orthogonal projection on to ker $(A - \lambda)$.

Remark 21.1. Observe that $\varphi(A)^* = \overline{\varphi}(A)$:

$$\begin{split} \langle \varphi(A)^* u, v \rangle &= \langle u, \varphi(A) v \rangle \\ &= \overline{\langle \varphi(A) v, u \rangle} \\ &= -\frac{1}{2\pi i} \lim_{\varepsilon \to 0^+} \int \overline{\varphi(\lambda) \langle (R(\lambda + i\varepsilon) - R(\lambda - i\varepsilon)) u, v \rangle} \, d\lambda \end{split}$$

Using $R(\lambda \pm i\varepsilon) - R(\lambda \mp i\varepsilon)$,

$$= \langle \overline{\varphi}(A)u, v \rangle \,.$$

We also introduced the spectral measures $d\mu_{u,v}$ with $\langle \varphi(A)u, v \rangle = \int \varphi(\lambda) d\mu_{u,v}(\lambda)$.

Proposition 21.1. The total mass of the spectral measure $d\mu_{u,v}$ is

$$\int d\mu_{u,v} = \langle u, v \rangle$$

Equivalently, $1(A) = I \in \mathcal{L}(H, H)$.

Proof. By continuity and density, we may assume u, v are in a dense subset of H; assume $u, v \in D(A)$. By polarization, we may take u = v. If $u \in D(A)$, then

$$(A-z)u = Au - zu$$

If $\operatorname{Im} z > 0$, then we get

$$u = R(z)Au - zR(z)u,$$

so we get

$$R(z)u = -\frac{1}{z}u + \frac{1}{z}R(z)Au.$$

If $z \to \infty$ with Re z fixed, we get $R(z)u = -\frac{1}{z}u + O(1/|z|^2)$. Recall from Nevannlinna's theorem that

$$\int d\mu_u = \lim_{z \to \infty} (-z \langle R(z)u, u \rangle) = ||u||^2.$$

21.2 Decay of spectral measures

Proposition 21.2. Let $\varphi \in C_B$ For all $u \in D(A)$ and $v \in H$,

$$\langle \varphi(A)Au, v \rangle = \langle \varphi_1(A)u, v \rangle,$$

where $\varphi_1(\lambda) = \lambda \varphi(\lambda) \in C_B$.

Proof. The left hand side is

LHS =
$$\lim_{\varepsilon \to 0} \frac{1}{2\pi i} \int \varphi(\lambda) \left\langle (R(\lambda + i\varepsilon) - R(\lambda - i\varepsilon))u, v \right\rangle$$

Note that $(R(\lambda + i\varepsilon) - R(\lambda - i\varepsilon))u = u + (\lambda + i\varepsilon)R(\lambda + i\varepsilon)u - (\lambda - i\varepsilon)R(\lambda - i\varepsilon)u$.

$$= \langle \varphi_1(A)u, v \rangle + \lim_{\varepsilon \to 0^+} \frac{i\varepsilon}{2\pi i} \int \varphi(\lambda) \left\langle (R(\lambda + i\varepsilon) + R(\lambda - i\varepsilon))u, v \right\rangle \, d\lambda$$

To show that the right term equals 0, we have

$$O(\varepsilon) \left| \int \varphi(\lambda) \left\langle R(\lambda \pm i\varepsilon u, v) \right\rangle d\lambda \right| \le O(\varepsilon) \int |\varphi(\lambda)| \|R(\lambda \pm i\varepsilon)u\| d\lambda$$

By Cauchy-Schwarz,

$$\leq O(\varepsilon) \left(\int \|R(\lambda \pm i\varepsilon u)\|^2 d\lambda \right)$$

Recall that $\operatorname{Im} \langle R(\lambda + i\varepsilon)u, u \rangle = \varepsilon \|R(\lambda + i\varepsilon)u\|^2$.

$$\begin{split} & \leq O(\varepsilon^{1/2}) \left(\int \operatorname{Im} \left\langle R(\lambda+i\varepsilon)u,u\right\rangle \, d\lambda \right)^{1/2} \\ & \xrightarrow[\varepsilon\to 0]{} 0. \end{split}$$

We get that $\langle \varphi(A)Au, v \rangle = \langle \varphi_1(A)u, v \rangle$.

In particular, if $\varphi \in C_0(\mathbb{R})$, we have

$$\left\langle \varphi(A)Au,Au\right\rangle =\left\langle \varphi_{1}(A)u,Au\right\rangle =\left\langle u,\overline{\varphi}_{1}(A)Au\right\rangle =\left\langle u,\overline{\psi}(A)u\right\rangle ,$$

where $\psi(\lambda) = \lambda^2 \varphi(\lambda)$. We get

$$\langle \varphi(A)Au, Au \rangle = \langle \psi(A)u, u \rangle$$

On the level of spectral measures, we get

$$\int \varphi(\lambda) \, d\mu_{Au}(\lambda) = \int \lambda^2 \varphi(\lambda) \, d\mu_u(\lambda).$$

If $0 \le \varphi \le 1$, then the left hand side is $\le ||Au||^2$. Letting $\varphi \uparrow 1$, we get by Fatou's lemma:

$$\int \lambda^2 \, d\mu_u(\lambda) < \infty$$

By monotone convergence, we get

$$\int \lambda^2 d\mu_u(\lambda) = ||Au||^2 < \infty \qquad \forall u \in D(A).$$

21.3 Multiplicativity of the functional calculus

Proposition 21.3. Let $\varphi, \psi \in C_0(\mathbb{R})$. Then $\varphi(A)\psi(A) = (\varphi\psi)(A)$.

Proof. Let $\varphi_k(\lambda) = \lambda^k \varphi(\lambda)$ for $k = 1, 2, \dots$ For $u \in H$ and $v \in D(A)$, we have:

$$\begin{split} \langle \varphi(A)u, Av \rangle &= \langle u, \overline{\varphi}(A)Av \rangle \\ &= \langle u, \overline{\varphi}_1(A)v \rangle \\ &= \langle \varphi_1(A)u, v \rangle \,. \end{split}$$

Thus, $\varphi(A)u \in D(A^*) = D(A)$ and $\varphi_1(A)u = A\varphi(A)u$. In particular, im $\varphi(A) \subseteq D(A)$ for all $\varphi \in C_0$. So im $\varphi_1(A) \subseteq D(A)$, so im $\varphi(A) \subseteq D(A^2)$. Iterating this argument, we get that im $\varphi(A) \subseteq D(A^j)$ for j = 1, 2, ... and $\varphi_j(A) = A^j \varphi(A)$ for any j. When p is a polynomial, we get $p(A)\varphi(A) = (p\varphi)(A)$.

The idea is to let $\chi \in C_0(\mathbb{R})$ with $0 \leq \chi \leq 1$ be such that $\chi = 1$ on $\operatorname{supp}(\varphi) \cup \operatorname{supp}(\psi)$. Pick a sequence of polynomials p_j such that $\overline{p}_j \chi \to \psi$ uniformly. Then $(p_j \chi)(A) \to \psi(A)$ in $\mathcal{L}(H, H)$. We will give the details next time.

22 Multiplicativity and the Functional Calculus for the Laplacian

22.1 Multiplicativity of the functional calculus

Last time, we were proving the multiplicativity of our functional calculus:

Proposition 22.1. Let A be self-adjoint, and let $\varphi, \psi \in C_0(\mathbb{R})$. Then $\varphi(A)\psi(A) = (\varphi\psi)(A)$.

Proof. Last time, we showed that $\operatorname{Im} \varphi(A) \subseteq D(A^j)$ for all j and that for any polynomial $p, p(A)\varphi(A) = (p\varphi)(A)$.

Let $\chi \in C_0(\mathbb{R})$ with $0 \le \chi \le 1$ and $\chi = 1$ on $\operatorname{supp}(\varphi) \cup \operatorname{supp}(\psi)$. For $u, v \in H$, write

$$\langle \varphi(A)u, (p\chi)(A)v \rangle = \langle \varphi(A)u, p(A)\chi(A)v \rangle$$

Since $\varphi \in D(A^j)$ for all j,

$$= \langle \overline{p}(A)\varphi(A)u, \chi(A)v \rangle$$

= $\langle (\overline{p}\varphi)(A)u\chi(A)v \rangle$.

Take a sequence p_j of polynomials such that $\chi \overline{p}_j \to \chi \psi = \psi$ uniformly on \mathbb{R} . Recall that we had for all $f \in C_B$, $||f(A)||_{\mathcal{L}(H,H)} \leq 2||f||_{L^{\infty}}$. Thus, $(\chi p_j)(A) \xrightarrow{\mathcal{L}(H,H)} \psi(A) = \psi(A)^*$. Also, $\overline{p}_j \varphi = \overline{p}_j \chi \varphi \to \psi \varphi$ uniformly, so $\overline{p}_j \varphi(A) \xrightarrow{\mathcal{L}(H,H)} (\psi \varphi)(A)$. We get

$$\langle \psi(A)\varphi(A)u,v\rangle = \langle \varphi(A)u,\psi(A)^*v\rangle = \langle (\psi\varphi)(A)u,\chi(A)v\rangle \,.$$

Now let $\chi \uparrow 1$ pointwise; we claim that $\chi(A) \to 1$ weakly. So we get $\langle \psi(A)\varphi(A)u, v \rangle = \langle (\psi\varphi)(A)u, v \rangle$ for all u, v.

To prove that $\chi(A) \to 1$ weakly, note that if $\varphi_j \in C_B$, $\varphi \in C_B$, and $\varphi_j \to \varphi$ pointwise boundedly ($\exists C$ such that $|\varphi_j(x)| \leq C$ for all j, x), then

$$\langle \varphi_j(A)u, v \rangle = \int \varphi_j(\lambda) \, d\mu_{u,v} \xrightarrow{j \to \infty} \int \varphi(\lambda) \, d\mu_{u,v}(\lambda) = \langle \varphi(A)u, v \rangle$$

by polarization and dominated convergence.

22.2 Spectrum and functional calculus for the Laplacian

Let $A = -\Delta$ on $L^2(\mathbb{R}^n)$ be self-adjoint with $D(A) = H^2(\mathbb{R}^n)$. Given $\varphi \in C_0(\mathbb{R})$, we compute $\varphi(A)$.

Proposition 22.2. Spec $(A) = [0, \infty)$.

Proof. First, Spec $(A) \subseteq [0, \infty)$, as $A \ge 0$: for $u \in D(A)$,

$$\langle Au, u \rangle = \int |\nabla u|^2 \ge 0$$

To get equality, it suffices to show that $(0, \infty) \subseteq \text{Spec}(A)$ (as the spectrum is closed). For contradiction, let $\lambda > 0$ be such that $A - \lambda : D(A) \to L^2$ is bijective. Then there exists a constant C > 0 such that $||u||_{L^2} \leq C||(A - \lambda)u||_{L^2}$ for any $u \in D(A)$.

Remark 22.1. A has no eigenvalues:⁷ If $u \in L^2$ and $(-\Delta - \lambda)u = 0$, then taking the Fourier transform, we get

$$(|\xi|^2 - \lambda)\widehat{u}(\xi) = 0,$$

so $\hat{u} = 0 \implies u = 0$.

Instead, we want to find **generalized eigenfunctions** $u \in L^{\infty}$ such that $(-\Delta - \lambda)u = 0$. We can take $u(x) = e^{ix \cdot \xi}$ for $\xi \in \mathbb{R}^n$ (where $|\xi|^2 = \lambda$). Consider the **quasimodes**⁸ $u_j(x) = j^{-n/2}\chi(x/j)e^{ix\xi}$, where $\chi \in C_0^{\infty}(\mathbb{R}^n)$ is 1 near 0 with $\|\chi\|_{L^2} = 1$. Then $\|u_j\|_{L^2} = 1$, and

$$\|(A-\lambda)(j^{-n/2}\chi(x/j)e^{ix\cdot\xi})\|_{L^2} = O(1/j).$$

So the lower bound inequality for $A - \lambda$ cannot hold.

To determine $\varphi(A)$ for $\varphi \in C_0(\mathbb{R})$, notice that $\varphi(A) = 0$ if $\operatorname{supp}(\varphi) \subseteq (-\infty, 0)$. Compute the resolvent first: If $\operatorname{Im} z \neq 0$,

$$R(z)u = v, \quad u, v \in L^2 \iff (-\Delta - z)v = u$$

By Fourier transform, we get

$$R(z)u = \mathcal{F}^{-1}\left(\frac{\widehat{u}(\xi)}{|\xi|^2 - z}\right).$$

We get

$$\langle \varphi(A)u, u \rangle = \lim_{\varepsilon \to 0^+} \frac{1}{2\pi i} \int \varphi(\lambda) \left\langle (R(\lambda + i\varepsilon) - R(\lambda - i\varepsilon))u, u \right\rangle \, d\lambda$$

By Parseval,

$$= \lim_{\varepsilon \to 0^+} \frac{1}{(2\pi)^n} \lim_{\varepsilon \to 0^+} \iint \varphi(\lambda) |\widehat{u}(\xi)|^2 \left(\frac{1}{|\xi|^2 - \lambda - i\varepsilon} - \frac{1}{|\xi|^2 - \lambda + i\varepsilon} \right) \, d\lambda \, d\xi$$

Integrate first in λ and send $\varepsilon \to 0$ using dominated convergence.

$$= \frac{1}{(2\pi)^n} \int \varphi(|\xi|^2) |\widehat{u}(\xi)|^2 d\xi.$$

So we get

$$\varphi(A)u = \mathcal{F}^{-1}(\varphi(|\xi|^2)\widehat{u}).$$

⁷This says that the spectral measures have no pure point components.

⁸This terminology is common in mathematical physics literature.

22.3 Correcting the norm bound in the functional calculus

Proposition 22.3. Let A be self-adjoint, and let $\varphi \in C_0(\mathbb{R})$.

 $\|\varphi(A)\|_{\mathcal{L}(H,H)} \le \|\varphi\|_{L^{\infty}}.$

Previously, we had a factor of 2 in the bound.

Proof. We have

$$\begin{split} \|\varphi(A)u\|^2 &= \langle \varphi(A)u, \varphi(A)u \rangle \\ &= \langle \overline{\varphi}(A)\varphi(A)u, u \rangle \\ &= \langle |\varphi|^2(A)u, u \rangle \\ &= \int |\varphi|^2(\lambda) \, d\mu_u(\lambda) \\ &\leq \|\varphi\|_{L^{\infty}}^2 \|u\|^2. \end{split}$$

We also get the following result.

Corollary 22.1.

$$\varphi(A) \|_{\mathcal{L}(H,H)} \le \|\varphi\|_{L^{\infty}(\operatorname{Spec}(A))}$$

Next, we will extend this multiplicativity property to more continuous functions.

23 Functional Calculus for Bounded Continuous Functions and Bounded Baire Functions

23.1 Approximation in the functional calculus

Let $\varphi, \psi \in C_0(\mathbb{R})$, and let A be self-adjoint. Last time, we showed that $\varphi(A)\psi(A) = (\varphi\psi)(A)$ and that $\|\varphi(A)\|_{\mathcal{L}(H,H)} \leq \|\varphi\|_{L^{\infty}(\mathrm{Spec}(A))}$.

These properties extend to $\varphi, \psi \in C_B(\mathbb{R})$ by approximation (pick $\varphi \in C_0$ with $\varphi_j \to \varphi$ pointwise and boundedly to get $\varphi_j(A) \to \varphi(A)$ weakly). Notice also that if $\varphi_k, \varphi \in C_B$ with $\varphi_j \to \varphi$ pointwise boundedly, then $\varphi_j(A) \to \varphi(A)$ strongly: for all $u \in H$,

$$\|\varphi_j(A)u - \varphi(A)u\|^2 = \langle (\varphi_j - \varphi)(A)u, (\varphi_j - \varphi)(A)u \rangle$$
$$= \int |\varphi_j(\lambda) - \varphi(\lambda)|^2 d\mu_n(\lambda)$$
$$\to 0$$

by dominated convergence. (And if we have uniform approximation, we get operator norm convergence.)

23.2 Domain of A in terms of spectral measures

Recall that if $u \in D(A)$, then $\int \lambda^2 d\mu(\lambda) < \infty$ and $\int \lambda^2 d\mu(\lambda) = ||Au||^2$. Assume, conversely, that $\int \lambda^2 d\mu_u(\lambda) < \infty$ for $u \in H$. Let $\varphi \in C_0$ with $0 \le \varphi \le 1$, and write

$$A\varphi(A)u = \varphi_1(A)u,$$

where $\varphi_1(\lambda) = \lambda \varphi(\lambda)$. We get

$$\|A\varphi(A)u\|^{2} = \langle \varphi_{1}(A)u, \varphi_{1}(A)u \rangle$$
$$= \int \lambda^{2} \varphi(\lambda)^{2} d\mu_{u}(\lambda).$$

Let $\varphi_j \in C_0$ with $0 \leq \varphi_j \leq 1$ and $\varphi_j \uparrow 1$. Then $\varphi_j(A)u \to u$ in H. Also,

$$\|A(\varphi_j(A) - \varphi_k(A))u\|^2 = \int \lambda^2 (\varphi_j^2(\lambda) - \varphi_k^2(\lambda)) \, d\mu_u(\lambda) \xrightarrow{j,k \to \infty} 0$$

by dominated convergence, so $A\varphi_j(A)u \to v$ in H. A is closed (as it is self-adjoint), so $u \in D(A)$, and $Au = \lim_{j\to\infty} A\varphi_j(A)u$.

Remark 23.1.

$$\|d\mu_{u,v}\| = \sup_{|\varphi| \le 1} \underbrace{\left| \int \varphi \, d\mu_{u,v} \right|}_{\langle \varphi(A)u,v \rangle} \le \|u\| \cdot \|v\|$$

23.3 Summary of properties of the functional calculus

Let's summarize our results:

Proposition 23.1 (continuous bounded functional calculus). Let A be self-adjoint. The map $\Phi: C_B(\mathbb{R}) \to \mathcal{L}(H, H)$ sending $\varphi \mapsto \varphi(A)$ has the following properties:

- 1. Φ is an algebra homomorphism.
- 2. $\varphi(A)^* = \overline{\varphi}(A)$.
- 3. $\|\varphi(A)\| \le \|\varphi\|_{L^{\infty}(\operatorname{Spec}(A))}$
- 4. For all $u \in H$, the map $d\mu_u : \varphi \mapsto \langle \varphi(A)u, u \rangle$ is a positive measure.
- 5. $1(A) = 1 \in \mathcal{L}(H, H).^9$
- 6. If $\varphi_j \to \varphi$ pointwise boundedly, then $\varphi_j(A) \to \varphi(A)$ strongly.
- 7. We have $D(A) = \{ u \in H : \int \lambda^2 d\mu(\lambda) < \infty \}$, where $Au = \lim_{j \to \infty} A\varphi_j(A)u$ if $\varphi_j \uparrow 1$ and $\varphi_j \in C_0$.

23.4 Extension of the functional calculus to bounded Baire functions

Next, we extend the functional calculus to the algebra of bounded Baire functions.

Definition 23.1. Let K be a class of functions $f : \mathbb{R} \to \mathbb{C}$. We say that K is **closed under pointwise limits** if for any sequence $f_j \in K$ such that $f = \lim_j f_j$ exists, we have $f \in K$. We let the **Baire functions** $Ba(\mathbb{R})$ be the smallest class of functions $\mathbb{R} \to \mathbb{C}$ containing $C(\mathbb{R})$ which is closed under pointwise limits.

Remark 23.2. Ba(\mathbb{R}) is an algebra under pointwise multiplication: Let $f \in C(\mathbb{R})$, and let $K = \{g : fg \in Ba(\mathbb{R})\}$. $K \supseteq C(\mathbb{R})$ and is closed under pointwise limits, so $K \supseteq Ba(\mathbb{R})$. Similarly, we extend to $f \in Ba(\mathbb{R})$.

Remark 23.3. If μ is a positive (Radon) measure and $f \in Ba(\mathbb{R})$, then f is μ -measurable.

Let $\operatorname{Ba}_b(\mathbb{R})$ be the Banach algebra of **bounded Baire functions** $(\operatorname{Ba}_b(\mathbb{R}) \subseteq L^1(\mu_u)$ for all $u \in H$).

Proposition 23.2. Let $\varphi \in Ba_b(\mathbb{R})$. There exists a unique, bounded linear map $\varphi(A) \in \mathcal{L}(H, H)$ such that

$$\langle \varphi(A)u, v \rangle = \int \varphi(\lambda) \, d\mu_{u,v}(\lambda).$$

 $^{^9 {\}rm This}$ actually follows from the fact that Φ is an algebra homomorphism.

Proof. We have to check that $(u, v) \mapsto \int \varphi(\lambda) d\mu_{u,v}$ is sesquilinear; the Riesz-representation theorem will provide $\varphi(A)$. We may assume that φ is real, so $|\varphi| \leq M$. Let us check that

$$\int \varphi(\lambda) \, d\mu_{\lambda_1 u_1 + \lambda_2 u_2, v} = \lambda_1 \int \varphi(\lambda) \, d\mu_{u_1, v}(\lambda) + \lambda_2 \int \varphi(\lambda) \, d\mu_{u_2, v}(\lambda).$$

Let $K = \{\varphi \in \text{Ba}_b(\mathbb{R}; \mathbb{R}) : |\varphi| \leq M$, this condition holds}. Then K contains continuous functions, and K is closed under pointwise limits (by dominated convergence). We need one more claim:

Claim: The class $\{\varphi \operatorname{Ba}_b(\mathbb{R};\mathbb{R}) : |\varphi| \leq M\}$ is the smallest class of functions $\mathbb{R} \to [-M, M]$ containing continuous functions $\mathbb{R} \to [-M, M]$ which is closed under pointwise limits. Check that this holds. We get that $K = \{\varphi \in \operatorname{Ba}_b(\mathbb{R};\mathbb{R}) : |\varphi| \leq M\}$, and the proposition follows.

24 The Spectral Theorem for Unbounded, Self-Adjoint Operators

24.1 Multiplicative properties of the functional calculus for bounded Baire functions

Last time, we set about extending our functional calculus to the class of bounded **Baire** functions $\operatorname{Ba}(\mathbb{R})$, the smallest class of functions $\mathbb{R} \to \mathbb{C}$ containing $C(\mathbb{R})$ which is closed under pointwise limits. We showed that for any $\varphi \in \operatorname{Ba}_b(\mathbb{R})$, there is a unique map $\varphi(A) \in \mathcal{L}(H, H)$ such that $\langle \varphi(A)u, v \rangle = \int \varphi(\lambda) d\mu_{u,v}(\lambda)$.

As in the case for continuous functions, we get

$$\|\varphi(A)\| \le \|\varphi\|_{L^{\infty}(\operatorname{Spec}(A))}.$$

If $\varphi \in \operatorname{Ba}_b(\mathbb{R})$ is real, then $\langle \varphi(A)u, u \rangle \in \mathbb{R}$, so $\varphi(A)$ is self-adjoint. In general, $\varphi(A)^* = \overline{\varphi}(A)$.

Next, we have the multiplicative property:

Proposition 24.1. Let A be self-adjoint, and let $\varphi, \psi \in Ba_b(\mathbb{R})$. Then

$$(\varphi\psi)(A) = \varphi(A)\psi(A).$$

Proof. We may assume that φ, ψ are real. Fix $\varphi \in C_B$ and consider $K_M = \{\psi \in \operatorname{Ba}(\mathbb{R}; \mathbb{R}) : |\psi| \leq M$, mult. prop. holds}. Then K_M contains the continuous functions, and K_M is closed under pointwise convergence: if $\psi_j \in K_M$ with $\psi_j \to \psi$ pointwise, then $\psi_j(A) \to \psi(A) \in K_M$ weakly, so $(\varphi\psi_j)(A) \to (\varphi\psi)$ weakly. It follows that $K_M = \{\psi \in \operatorname{Ba}(\mathbb{R}; \mathbb{R}) : |\psi| \leq M\}$. Next, keeping $\psi \in \operatorname{Ba}_b(\mathbb{R}; \mathbb{R})$ fixed, we extend the multiplicative property to all $\varphi \in \operatorname{Ba}_b$.

It follows as in the continuous case that if $\varphi_j \in \operatorname{Ba}_b(\mathbb{R})$ with $\varphi_j \to \varphi$ pointwise boundedly, then $\varphi_j(A) \to \varphi(A)$ strongly (for all $u \in H$, $\|\varphi_j(A)u - \varphi(A)u\| \to 0$).

Remark 24.1. Assume that $\varphi \in Ba_b$ is such that $\psi(\lambda) = \lambda \varphi(\lambda) \in Ba_b$. Let

$$r(\lambda) = \frac{1}{z - \lambda},$$

Im
$$z \neq 0$$
, $\varphi_z(\lambda) = r(\lambda)^{-1} \varphi(\lambda) = \psi(\lambda) - z\varphi(\lambda) \in \operatorname{Ba}_b$.

We can write

$$\varphi(\lambda) = r(\lambda)\varphi_z(\lambda),$$

 \mathbf{SO}

$$\varphi(A) = r(A)\varphi_z(A)$$

Now r(A) = R(z) $(\lambda r(\lambda) \in C_B$, so $Ar(A) = \frac{\lambda}{\lambda - z}(A) = 1 + zr(A)$. We get that $\operatorname{Im} \varphi(A) \subseteq D(A)$ and

$$A\varphi(A) = \underbrace{AR(z)}_{!+zR(z)}\varphi_z(A) = \psi(A).$$

So we get that the multiplicative property holds when one of the functions is λ (which is unbounded), as long as the result is still bounded.

24.2 The spectral theorem for unbounded, self-adjoint operators

Theorem 24.1 (spectral theorem). Given a self-adjoint operator A, there is a unique algebra homomorphism $\Phi : \operatorname{Ba}_b(\mathbb{R}) \to \mathcal{L}(H, H)$ sending $\varphi \mapsto \varphi(A)$ such that:

- 1. $\overline{\varphi}(A) = \varphi(A)^*$
- 2. $\|\varphi(A)\| \le \|\varphi\|_{L^{\infty}(\operatorname{Spec}(A))}$
- 3. If $\varphi_j \in Ba_b$ with $\varphi_j \to \varphi$ pointwise boundedly, then $\varphi_j(A) \to \varphi(A)$ strongly.
- 4. If $\varphi, \varphi_1(\lambda) \ (= \lambda \varphi(\lambda)) \in \operatorname{Ba}_b$, then $\varphi_1(A) = A \varphi(A)$.
- 5. $u \in D(A)$ if and only if there is a uniform upper bound for $\|\varphi_1(A)u\|$ when $\varphi_1(\lambda) = \lambda\varphi(\lambda), 0 \le \varphi \le 1$, and $\varphi \in Ba_b$ with compact support. In this case,

$$Au = \lim_{j \to \infty} \varphi_{1,j}(A)u,$$

where $\varphi_i \uparrow 1$.

Proof. Only uniqueness remains to be checked. Let $r_z(\lambda) = \frac{1}{\lambda - z}$, where $\operatorname{Im} z \neq 0$. Then $\lambda r_z(\lambda) = 1 + zr_z(\lambda)$, so by property 4, $A\Phi(r_z) = 1 + z\Phi(r_z)$. So we conclude that $\Phi(r_z) = R(z)$, the resolvent of A. Given $u \in H$, let μ be the measure on \mathbb{R} sending $\varphi \mapsto \langle \Phi(\varphi)u, u \rangle$. Then

$$\langle \Phi(r_z)u, u \rangle = \langle R(z)u, u \rangle = \int \frac{1}{\lambda - z} d\mu(\lambda).$$

By the proof of Nevanlinna's theorem,

$$d\mu = \lim_{\varepsilon \to 0^+} \frac{1}{\pi} \operatorname{Im} \left\langle R(\lambda + i\varepsilon)u, u \right\rangle \, d\lambda,$$

which shows the uniqueness.

24.3 Extending the functional calculus to unbounded Baire functions

Next, we will define $\varphi(A)$ as an unbounded operator when $\varphi \in Ba(\mathbb{R})$. Recall that if $\varphi \in Ba_b$, then

$$\|\varphi(A)u\|^2 = \int |\varphi(\lambda)|^2 \, d\mu_u(\lambda).$$

Define

$$D(\varphi(A)) = \{ u \in H : \int |\varphi(\lambda)|^2 d\mu_i(\lambda) < \infty \}$$
$$= \left\{ u \in H : \sup_{|\psi| \le |\varphi|, \psi \in \operatorname{Ba}_b} \|\psi(A)u\| < \infty \right\}.$$

This is a linear subspace of H.

To define $\varphi(A)$, let $\varphi_j \in Ba_b$ be such that $\varphi_j \to \varphi$ with $|\varphi_j| \leq |\varphi|$. Then, for any $u \in D(\varphi(A))$, $\lim_{j\to\infty} \varphi_j(A)u$ exists $(\|\varphi_j(A)u - \varphi_k(A)u\|^2 = \int |\varphi_j - \varphi_k|^2 d\mu_i \xrightarrow{j,k\to\infty} 0$ by dominated convergence). So we let

$$\varphi(A)u = \lim \varphi_k(A)u,$$

which is independent of the chosen sequence.

Proposition 24.2. Let A be self-adjoint, and let $\varphi \in Ba(\mathbb{R})$. Then $\varphi(A)$ is densely defined, and $\varphi(A)^* = \overline{\varphi}(A)$ (so $D(\varphi(A)^*) = D(\overline{\varphi})$). In particular, $\varphi(A)$ is closed.

25 Projection-Valued Measures

25.1 Unbounded functional calculus

Let A be self-adjoint, and let $\varphi \in Ba(\mathbb{R})$. We want to define $\varphi(A)$ by

$$D(\varphi(A)) = \left\{ u \in H : \int |\varphi(\lambda)|^2 d\mu_u(\lambda) < \infty \right\},$$
$$\varphi(A)u = \lim_{j \to \infty} \varphi_j(A)u, \qquad \varphi_j \in \operatorname{Ba}_b(\mathbb{R}), \varphi_j \to \varphi, |\varphi_j| \le |\varphi| < \infty$$

Proposition 25.1. Let A be self-adjoint, and let $\varphi \in Ba(\mathbb{R})$. Then $\varphi(A)$ is densely defined, and $\varphi(A)^* = \overline{\varphi}(A)$ (so $D(\varphi(A)^*) = D(\overline{\varphi})$). In particular, $\varphi(A)$ is closed.

Proof. Let's check the first claim. If $u \in H$, let $\chi_n = \mathbb{1}_{\{|\varphi| \leq n\}}$. Then $\chi_n \in Ba_b$, and $\chi_n \to 1$. So $\chi_n(A)u \to u$. Notice that if $u \in H$ and $\varphi \in Ba_b(\mathbb{R})$, then $d\mu_{\varphi(A)u} = |\varphi|^2 d\mu_u$: for any $f \in C_0$,

$$\int f \, d\mu_{\varphi(A)u} = \langle f(A)\varphi(A)u, \varphi(A)u \rangle = \langle (f|\varphi|^2)(A)u, u \rangle = \int f|\varphi|^2 \, d\mu_u.$$

In particular, $\operatorname{supp}(d\mu_{\chi_n(A)u}) \subseteq \{|\varphi| \le n\}$, so

$$\int |\varphi|^2 \, d\mu_{\chi_n(A)u} < \infty,$$

which implies that $\chi_n(A)u \in D(\varphi(A))$. Now use this argument with $\chi_n\varphi$ to get the claim.

25.2 Projection-valued measures

Let $M \subseteq \mathbb{R}$ be a Baire set $(\mathbb{1}_M \in Ba)$ and set $E(M) := \mathbb{1}_M(A) \in \mathcal{L}(H, H)$. Then

- E(M) is an orthogonal projection on H.
- $E(\mathbb{R}) = 1.$
- $E(M_1)E(M_2) = E(M_1 \cap M_2).$
- $E(\emptyset) = 0.$
- If $M = \bigcup_{j=1}^{\infty} M_j$ with $M_j \cap M_k = \emptyset$, then E(M) is the strong limit of $\sum_{j=1}^{N} E(M_j)$ as $N \to \infty$.

The map $M \mapsto E(M)$ is an orthogonal projection-valued measure.

Recall next that if μ is a positive bounded measure on \mathbb{R} , then there exists a unique left continuous increasing function φ such that $\varphi(\lambda) \to 0$ as $\lambda \to -\infty$ and $\int f \, d\mu = \int f \, d\varphi$ for all $f \in C_0$: We have $\varphi(\lambda) = \mu(\mathbb{1}_{(-\infty,\lambda)})$.

In particular,

$$\mu_u(\mathbb{1}_{(-\infty,\lambda)}) = \left\langle \mathbb{1}_{(-\infty,\lambda)}(A)u, u \right\rangle = \left\langle E_\lambda u, u \right\rangle, \quad \text{where } E_\lambda = E((-\infty,\lambda)) = \mathbb{1}_{(-\infty,\lambda)}(A).$$

We have:

- $E_{\lambda}u \to 0$ as $\lambda \to -\infty$,
- $E_{\lambda}u \to u$ as $\lambda \to \infty$,
- $E_{\lambda-\varepsilon}u \to E_{\lambda}u$ as $\varepsilon \to 0^+$.

If $\varphi \in Ba_b$, we have

$$\langle \varphi(A)u, u \rangle = \int \varphi(\lambda) \, d\mu_u(\lambda) = \int \varphi(\lambda) \, d\langle E_\lambda u, u \rangle.$$

If $u \in D(A)$, then $Au = \lim_{j\to\infty} A\varphi_j(A)u$, where $0 \le \varphi_j \le 1$ with $\varphi_j \in Ba$ and $\operatorname{supp}(\varphi_j)$ compact. Then

$$\langle Au, u \rangle = \lim_{j \to \infty} \int \lambda \varphi_j(\lambda) \, d \langle E_\lambda u, u \rangle = \int \lambda \, d \langle E_\lambda u, u \rangle.$$

Formally, we write

$$A = \int \lambda \, dE_{\lambda}.$$

25.3 Properties of projection-valued measures

There is nothing new here, but we are taking a different (and useful) point of view. Here is a proposition that expresses this point of view.

Proposition 25.2.

- 1. Let $\lambda \in \mathbb{R}$. Then $\lambda \in \text{Spec}(A)$ if and only if $E((\lambda \varepsilon, \lambda + \varepsilon)) \neq 0$ for all $\varepsilon > 0$.
- 2. $E({\lambda}) \neq 0$ if and only if λ is an eigenvalue of A and $E({\lambda})$ is the orthogonal projection onto ker $(A \lambda)$.

Proof.

1. (\Leftarrow): For any $\varepsilon > 0$, pick $u_{\varepsilon} \in H$ such that $||u_{\varepsilon}|| = 1$ and $u_{\varepsilon} = E((\lambda - \varepsilon, \lambda + \varepsilon))u_{\varepsilon}$. Then $d\mu_{u_{\varepsilon}}(t) = \mathbb{1}_{(\lambda - \varepsilon, \lambda + \varepsilon)} d\mu_{u_{\varepsilon}}(t)$. So $u_{\varepsilon} \in D(A)$ and

$$\|(A-\lambda)u_{\varepsilon}\| = \int (t-\lambda)^2 d\mu_{u_{\varepsilon}}(t) \le \varepsilon^2 \int d\mu_{u_{\varepsilon}}(t) = \varepsilon^2$$

It follows that $\lambda \in \text{Spec}(A)$: for any $\varepsilon > 0$ there is a $u_{\varepsilon} \in H$ such that $||u_{\varepsilon}|| = 1$ and $||(A - \lambda)u_{\varepsilon}|| \le \varepsilon$, so $A - \lambda$ has no bounded inverse.

 (\Longrightarrow) : If $E((\lambda - \varepsilon, \lambda + \varepsilon)) := E(I_{\varepsilon}) = 0$ for some $\varepsilon > 0$, then for any $u \in H$,

$$u = E(\mathbb{R})u = E(\mathbb{R} \setminus I_{\varepsilon})u$$

Then for any $u \in H$, dist $(\lambda, \operatorname{supp}(\mu_u)) \geq \varepsilon$. Let $\varphi(t) = \frac{1}{t-\lambda}$, which is continuous and bounded on $\operatorname{supp}(\mu_u)$ for all u. Then define $\varphi(A) \in \mathcal{L}(H, H)$ by $\langle \varphi(A)u, u \rangle = \int \varphi(t) d\mu_u(t)$. We get $(A - \lambda)\varphi((A) = 1$, so $\lambda \notin \operatorname{Spec}(A)$.

2. (\implies) : If $E(\{\lambda_0\}) \neq 0$, then let $u \neq 0$ be such that $u = E(\{\lambda_0\})u$. Then $\operatorname{supp}(\mu_u(\lambda)) \subseteq \{\lambda_0\}$, so $u \in D(A)$ and

$$\|(A - \lambda_0)u\|^2 = \int (\lambda - \lambda_0)^2 d\mu_u(\lambda) = 0.$$

So λ_0 is an eigenvalue, and im $E(\{\lambda_0\}) \subseteq \ker(A - \lambda - 0)$.

On the other hand, if $(A - \lambda_0)u = 0$ for some $0 \neq u \in D(A)$, then for $\text{Im } z \neq 0$, $(A - z)u = (\lambda_0 - z)u$, so

$$R(z)u = \frac{1}{\lambda_0 - z}u, \qquad \langle R(z)u, u \rangle = \frac{\|u\|^2}{\lambda_0 - z}.$$

So by the uniqueness in our Nevanlinna representation, we get $\mu_u(\lambda) = ||u||^2 \delta(\lambda - \lambda_0)$. So for any $\varphi \in \text{Ba}_b$, $\varphi(A)u = \varphi(\lambda_0)u$. So $E(\{\lambda_0\}) \neq 0$, and $E(\{\lambda_0\})u = u$. Thus, im $E(\{\lambda_0\}) = \ker(A - \lambda_0)$.

26 Weyl's Criterion and Weyl's Theorem

26.1 Weyl's criterion

Last time, we had $\operatorname{Spec}(S) = \operatorname{Spec}_d(A) \sqcup \operatorname{Spec}_{\operatorname{ess}}(A)$, where $\operatorname{Spec}_d(A)$ is the set of isolated eigenvalues of A of finite multiplicity.

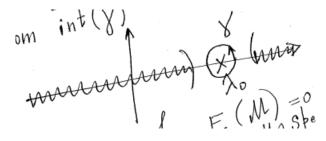
Proposition 26.1 (Weyl's criterion). $\lambda \in \text{Spec}_{ess}(A)$ if and only if there exists a sequence $u_n \in D(A)$ with $||u_n|| = 1$, such that $u_n \to 0$ weakly and $||(A - \lambda)u_n|| \to 0$.

Such a sequence is called a Weyl sequence.

Lemma 26.1. Let λ be an isolated point of Spec(A). Then λ_0 is an eigenvalue, and

$$E(\{\lambda_0\}) = \frac{1}{2\pi i} \int_{\gamma} (z - A)^{-1} dz$$

where γ is a small circle centered at λ_0 with $\operatorname{Spec}(A) \setminus \{\lambda\}$ away from $\operatorname{int}(\gamma)$.



Proof. E(M) = 0 if $M \cap \text{Spec}(A) = \emptyset$. For all small enough $\varepsilon > 0$, we have

$$0 \neq E((\lambda_0 - \varepsilon, \lambda_0 + \varepsilon)) = E(\{\lambda_0\}),$$

so λ_0 is an eigenvalue. Compute

$$\frac{1}{2\pi i} \int_{\gamma} \langle (z-A)^{-1} u, u \rangle \, dz = \frac{1}{2\pi i} \int_{\gamma} \int \frac{1}{z-\lambda} \, d\langle E_{\lambda} u, u \rangle \, dz$$
$$= \int \left(\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z-\lambda} \, dz \right) \, d\langle E_{\lambda} u, u \rangle$$

The part in the parentheses equals 1 if $\lambda \in int(\gamma)$ and 0 if $\lambda \notin int(\gamma)$.

$$= \int \mathbb{1}_{\operatorname{int}(\gamma)\cap\mathbb{R}}(\lambda) \, d\langle E_{\lambda}u, u \rangle$$
$$= \langle E(\{\lambda_0\})u, u \rangle$$
$$= \langle E(\operatorname{int}(\gamma))u, u \rangle.$$

Now we can prove Weyl's criterion.

Proof. (\Leftarrow): Assume that there is a sequence $u_n \in D(A)$ with $||u_n|| = 1$, such that $u_n \to 0$ weakly and $||(A - \lambda)u_n|| \to 0$. Then $\lambda \in \text{Spec}(A)$. Assume that $\lambda \in \text{Spec}_d(A)$. Then, using

$$(z-A)u_n = (\lambda - A)u_n) + (z-\lambda)u_n,$$

we have

$$(z-A)^{-1}u_n = \frac{1}{z-\lambda}u_n - (z-A)^{-1}\frac{1}{z-\lambda}(\lambda-A)u_n$$

Integrate over γ to get

$$E(\{\lambda\})u_n = u_n - \underbrace{\frac{1}{2\pi i} \int_{\gamma} (z-A)^{-1} (z-\lambda)^{-1} (\lambda-A)u_n \, dz}_{\rightarrow 0 \text{ in } \mathcal{H}}.$$

We get that $||E({\lambda})u_n - u_n|| \to 0$. $E({\lambda})$ is finite rank, so it is compact. Therefore, $E({\lambda})u_n \to 0$, which contradicts the fact that $||u_n|| = 1$.

 (\Longrightarrow) : Let $\lambda \in \operatorname{Spec}_{\operatorname{ess}}(A)$. We claim that for all $\varepsilon > 0$, dim $E((\lambda - \varepsilon, \lambda + \varepsilon))\mathcal{H} = \infty$. Indeed, assume that dim $E(I)\mathcal{H} < \infty$ for some $I = (\lambda - \varepsilon, \lambda + \varepsilon)$. Then write

$$\mathcal{H} = E(I)\mathcal{H} \oplus E(I^c)\mathcal{H},$$

which is a closed, orthogonal direct sum. This composition reduces A, and $\operatorname{Spec}(A|_{E(I)\mathcal{H}}) \cap I \neq \emptyset$. Hence, $\operatorname{Spec}(A) \cap I = \operatorname{Spec}(A|_{E(I)\mathcal{H}})$, which is finite, of finite multiplicity. So $\lambda \in \operatorname{Spec}_d(A)$.

If dim $E(\{\lambda\})\mathcal{H} = \infty$ (λ is an eigenvalue of ∞ multiplicity), we let $u_n \in E(\{\lambda\})\mathcal{H}$ be an orthonormal sequence. In general, we can find a sequence $\varepsilon_n \downarrow 0$ such that

$$P_n = E((\lambda - \varepsilon_n, \lambda - \varepsilon_{n+1}) \cup (\lambda + \varepsilon_{n+1}, \lambda - \varepsilon_n)) \neq 0, \qquad P_n P_m = 0, \quad n \neq m.$$

It suffices to take $u_n \in P_n \mathcal{H}$ of norm 1.

26.2 Weyl's theorem

Theorem 26.1 (Weyl). Let A, B be self-adjoint, bounded from below, and such that for some $c \in \mathbb{R}$, $(A + c)^{-1} - (B + c)^{-1}$ is compact. Then $\operatorname{Spec}_{ess}(A) = \operatorname{Spec}_{ess}(B)$.

Proof. We check that $\operatorname{Spec}_{\operatorname{ess}}(A) \subseteq \operatorname{Spec}_{\operatorname{ess}}(B)$. Let $\lambda \in \operatorname{Spec}_{\operatorname{ess}}(A)$, let u_n be a Weyl sequence for A at λ , and let $v_n = (B+c)^{-1}(A+c)u_n \in D(B)$. Write $(B+c)^{-1} = (A+c)^{-1} + K$, where K is compact. Then

$$v_n = u_n + K(A+c)u_n$$

$$= u_n + \underbrace{K(A - \lambda)u_n}_{\to 0} + \underbrace{K(\lambda + c)u_n}_{\to 0 \text{ weakly}}$$

So $||v_n|| \ge 1/2$ for all large n. Hence, $w_n = \frac{v_n}{||v_n||} \in D(B)$, $w_n \to 0$ weakly, and $(B - \lambda)w_n \to 0$ since

$$(B - \lambda)v_n) = (B + c)v_n - (-\lambda - c)v_n$$

= $(A + c)u_n - (\lambda + c)v_n$
= $\underbrace{(A - \lambda)u_n}_{\to 0} - (\lambda + c)\underbrace{(v_n - u_n)}_{\to 0}.$

26.3 Applications

Example 26.1. Consider $P_0 = -\Delta$ on \mathbb{R}^n , and let $P = P_0 + q$ with $q \in C(\mathbb{R}^n; \mathbb{R})$ such that $q \to 0$ as $|x| \to \infty$. P and P_0 are self-adjoint with $D(P) = D(P_0) = H^2(\mathbb{R}^n)$, and let us check that $(P + c)^{-1} - (P_0 + c)^{-1}$ is compact:

Let us write $(P+x)u = (P_0+c)u + qu$ and replace $u \in H^2$ by $(P_0+c)^{-1}u$ for $u \in H^2(\mathbb{R}^n)$. Then $u \in L^2$ with

$$(P+c)(P_0+c)^{-1}u = u + q(P_0+c)^{-1}u.$$

Apply $(P+c)^{-1}$ to get

$$(P_0 + c)^{-1}u = (P + c)^{-1}u + (P + c)^{-1}q(P_0 + c)^{-1}u.$$

We get the resolvent identity

$$(P+c)^{-1} - (P_0+c)^{-1} = -(P+c)^{-1}q(P_0+c)^{-1}.$$

Let us check that $q(P_0 + c)^{-1} : L^2 \to L^2$ is compact: Approximating q by a sequence $q_j \in \overline{C_0}$ (uniformly), we may assume that $q \in C_0(\mathbb{R})$. If $\chi \in C_0^{\infty}(\mathbb{R}^n)$ with $\chi q = q$, we get

$$q(P_0+c)^{-1} = q(\chi(P_0+c)^{-1}) : L^2 \to H^2 \cap \mathcal{E}(\operatorname{supp}(\chi)) \to L^2,$$

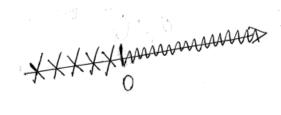
where the second map is compact. We get

$$\operatorname{Spec}_{\operatorname{ess}}(P) = \operatorname{Spec}_{\operatorname{ess}}(P_0) = [-\infty),$$

 \mathbf{SO}

 $\operatorname{Spec}(P) = [0, \infty) \cup \{ \text{negative eigenvalues} \},\$

where negative eigenvalues may only accumulate at 0.



If q is rapidly decreasing at ∞ , then $\operatorname{Spec}(P) \cap (-\infty)$ is finite and

of negative eigenvalues
$$\leq C_n \int |q|^{n/2} dx$$
.

For $n \geq 3$, this is the Cwikel-Lieb-Rozenblum estimate (1972-1977). Observe that there are no negative eigenvalues if q is small.

Example 26.2. Let $P = -\Delta + q$ with $q \in C(\mathbb{R}^n)$ and $q \ge 0$. Let $\eta = \liminf_{|x|\to\infty} q(x) \in [0,\infty]$. We claim that $\inf \operatorname{Spec}_{\operatorname{ess}}(P) \ge \eta$ (Spec(P) is discrete in $(0,\eta)$). We may assume that $\eta < \infty$. Let

$$A = -\Delta + \max(q, \eta), \qquad B = q - \max(q, \eta) \in C(\mathbb{R}^n).$$

Then $B(x) \to 0$ as $|x| \to +\infty$. We get that $B(A+c)^{-1}$ is compact on L^2 , since $(A+c)^{-1}(L^2) \subseteq H^1(\mathbb{R}^n)$. Thus,

$$\operatorname{Spec}_{\operatorname{ess}}(\underbrace{-\Delta+q}_{=A+B}) = \operatorname{Spec}_{\operatorname{ess}}(A) \subseteq \operatorname{Spec}(A) \subseteq [\eta,\infty).$$